RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Isolation and Linkage Mapping of Coding Sequences from Chicken Cosmids by Exon Trapping

        Mannen, H.,Dote, Y.,Uratsuji, H.,Yoshizawa, K.,Okamoto, S.,Tsuji, S. Asian Australasian Association of Animal Productio 2004 Animal Bioscience Vol.17 No.3

        We performed exon trapping in order to locate functional genes on chicken chromosomes (GGA) and to identify functional gene sequences from chicken cosmids. Sequence analysis of 100 clones revealed 17 putative exons, five of which were identified with known sequences in a gene database search: thymopoietin beta (TMPO), U5 snRNP-specific 40 kDa protein (HPRP8BP), dihydropyridine receptor alpha 1 subunit (CACNL1A3), cystein string protein (CPS) and C15orf4. We attempted to map the genes to chicken chromosomes by using FISH and linkage analysis. The chromosomal localizations were GGA1 (TMPO), GGA10 (C15orf4), GGA23 (HPRP8BP) and GGA28 (CPS) by FISH and linkage analysis, while that of CACNL1A3 was predicted to be on a microchromosome by FISH but not by linkage analysis. Comparative mapping analyses between chickens and humans for the genes revealed both known and new synteny. The syntenic conservation between GGA1 and human chromosome (HSA) 12q23 (TMPO) and between GGA10 and HSA15q25 (C15orf4), were consistent with a recent publication, while two new syntenies were observed between GGA28 and HSA20q13.3 in CPS and between GGA23 and HSA1p34-35 in HPRP8BP. The information of presently mapped genes can contribute as anchor markers based on functional genes and the construction of a comparative map.

      • Peak Temperature Reduction Method of SiC-MOSFETs Employed in the Initial Charge for the DC Capacitor Using Leg Short-Circuits

        Tomoyuki Mannen,Hidetaka Mishima,Keiji Wada 전력전자학회 2019 ICPE(ISPE)논문집 Vol.2019 No.5

        This paper proposes an improved initial-charge method for the dc-capacitor in voltage source power converters. The proposed method makes multiple short-circuits in each leg by using power devices in the converter, which discharges the dc capacitor and suppresses its overvoltage due to the initial charge. Short time periods of short-circuit occur several times in each leg for reducing the power consumption in and peak junction temperature of power devices. The experimental verification using a 200-V, 5-kVA three-phase converter shows that the proposed method can reduce the power consumption by 6% and suppress the estimated peak temperature by 200 ◦C. The experimental results exhibit a good overvoltage suppression capability of the proposed method without SiC-MOSFET degradation. As a result, the proposed method makes it possible to remove the initial charge circuit resulting in reduction in the size and cost of power converters.

      • Video in the Web: Technical Challenges and Standardization

        Soohong Park,Mannens, E,Walle, R V d,Soderberg, J,Adams, G,Hegaret, P L,Hong, C S IEEE 2010 IEEE multimedia Vol.17 No.4

        <P>This column describes the current status of Web-based video in World Wide Web Consortium (W3C) standardization efforts. The new W3C specifications are designed to facilitate the cross-community integration of media objects, online media captioning, and temporal and spatial media fragments using uniform resource identifiers (URIs) designed to make video a first-class citizen on the Web.</P>

      • KCI등재

        Identification of the Gene Responsible for Chicken Muscular Dystrophy

        Matsumoto, Hirokazu,Sasazaki, Shinji,Mannen, Hideyuki The Korean Society of Poultry Science 2011 韓國家禽學會誌 Vol.38 No.2

        By a series of positional cloning, we successfully narrowed down the AM candidate region to approximately 1.2 Mbp on GGA2q including 7 functional genes. Subsequently, we identified WWP1 gene as the most likely AM candidate by sequence comparison. The amino acid sequence around the candidate mutation was highly conserved among tetrapods, suggesting that WWP1 is the causative gene of chicken muscular dystrophy. Transfection of mutated WWP1 gene into $C_2C_{12}$ myoblasts disrupted muscle differentiation process. The abnormal muscle differentiation is a characteristic of chicken muscular dystrophy, so we could demonstrate a part of phenotype of the disease. Furthermore, western blotting revealed that accumulation of caveolin-3 protein is limited in damaged muscle of muscular dystrophic chicken, suggesting caveolin-3 may be associated with the pathological change of the disease. We could conclude that WWP1 gene is the responsible one for chicken muscular dystrophy from these results, but the mechanism leading the onset should be clarified in the future. The information will contribute to the study of chicken muscular dystrophy and the corresponding human dystrophies.

      • Adsorption of charged substrates and products on an enzyme reactor prepared by glutaraldehyde coupling on alkylamine derivatives of Ti(IV)-coated porous silica beads

        Lambrecht, R.H.D.,Slegers, G.,Mannens, G.,Claeys, A. IPC Science and Technology Press ; Elsevier Scienc 1987 Enzyme and microbial technology Vol.9 No.4

        Ti(IV) coating of porous silica beads, followed by derivatization with 1,6-diaminohexane and activation with glutaraldehyde was tested for the immobilization of glutamate decarboxylase (l-glutamate 1-carboxylyase, EC 4.1.1.15). The enzyme column prepared with the immobilized glutamate decarboxylase was designed for the preparation of 1 μmol γ-[<SUP>13</SUP>N]aminobutyric acid, a new tracer for positron emission tomography. Preliminary results, indicating high immobilization yields of active enzyme with good long term stabilities, led to a more detailed investigation of the Ti(IV) coating. When a column, containing about 1 g of enzyme-loaded beads was used for the synthesis of γ-[<SUP>13</SUP>N]aminobutyric acid (GABA) from l-[<SUP>13</SUP>N]glutamate, most of the <SUP>13</SUP>N activity remained adsorbed onto the column. The elution patterns of l-glutamate and GABA from columns of glutamate decarboxylase, immobilized on Ti(IV) coated silica beads, were investigated by using an h.p.l.c. u.v. detector. Different treatments of the Ti(IV) coated supports were tested to improve the desorption kinetics of GABA and l-glutamate. None of these methods gave a satisfactory improvement of the elution patterns of GABA and l-glutamate. The results indicate that the Ti(IV) coated silica beads have a large adsorption capacity, even though the enzyme is covalently linked. The described immobilization method is not recommended for enzymes having charged substrates or products and in which a small amount of substrate has to be applied onto a reactor containing a large amount of Ti(IV) coated support. The method can be applied when the enzyme reactor is operated in steady state conditions with continuous supply of substrate.

      • KCI등재

        Identification of the Gene Responsible for Chicken Muscular Dystrophy

        Hirokazu Matsumoto,Shinji Sasazaki,Hideyuki Mannen 韓國家禽學會 2011 韓國家禽學會誌 Vol.38 No.2

        By a series of positional cloning, we successfully narrowed down the AM candidate region to approximately 1.2 Mbp on GGA2q including 7 functional genes. Subsequently, we identified WWP1 gene as the most likely AM candidate by sequence comparison. The amino acid sequence around the candidate mutation was highly conserved among tetrapods, suggesting that WWP1 is the causative gene of chicken muscular dystrophy. Transfection of mutated WWP1 gene into C₂C₁₂ myoblasts disrupted muscle differentiation process. The abnormal muscle differentiation is a characteristic of chicken muscular dystrophy, so we could demonstrate a part of phenotype of the disease. Furthermore, western blotting revealed that accumulation of caveolin-3 protein is limited in damaged muscle of muscular dystrophic chicken, suggesting caveolin-3 may be associated with the pathological change of the disease. We could conclude that WWP1 gene is the responsible one for chicken muscular dystrophy from these results, but the mechanism leading the onset should be clarified in the future. The information will contribute to the study of chicken muscular dystrophy and the corresponding human dystrophies.

      • SCIESCOPUSKCI등재

        The Japanese Wagyu beef industry: current situation and future prospects - A review

        Gotoh, Takafumi,Nishimura, Takanori,Kuchida, Keigo,Mannen, Hideyuki Asian Australasian Association of Animal Productio 2018 Animal Bioscience Vol.31 No.7

        In Japan, Wagyu cattle include four Japanese breeds; Black, Brown, Shorthorn, and Polled. Today, the renowned brand name Wagyu includes not only cattle produced in Japan, but also cattle produced in countries such as Australia and the United States. In recent years, the intramuscular fat percentage in beef (longissimus muscle) from Japanese Black cattle has increased to be greater than 30%. The Japanese Black breed is genetically predisposed to producing carcass lipids containing higher concentrations of monounsaturated fatty acids than other breeds. However, there are numerous problems with the management of this breed including high production costs, disposal of untreated excrement, the requirement for imported feed, and food security risks resulting from various viral diseases introduced by imported feed. The feeding system needs to shift to one that is more efficient, and improves management for farmers, food security for consumers, and the health environment for residents of Japan. Currently, we are developing a metabolic programming and an information and communications technology (ICT, or Interne of Things) management system for Wagyu beef production as future systems. If successful, we will produce safe, high-quality Wagyu beef using domestic pasture resources while solving the problems of how to utilize increasing areas of abandoned agricultural land and to make use of the plant-based feed resources in Japan's mountainous areas.

      • SCIESCOPUSKCI등재

        Breed Discrimination Using DNA Markers Derived from AFLP in Japanese Beef Cattle

        Sasazaki, S.,Imada, T.,Mutoh, H.,Yoshizawa, K.,Mannen, H. Asian Australasian Association of Animal Productio 2006 Animal Bioscience Vol.19 No.8

        In the meat industry, correct breed information in food labeling is required to assure meat quality. Genetic markers provide corroborating evidence to identify breed. This paper describes the development of DNA markers to discriminate between Japanese Black and F1 (Japanese Black${\times}$Holstein) breeds. The amplified fragment length polymorphism method was employed to detect candidate markers absent in Japanese Black but present in Holstein. The 1,754 primer combinations yielded eleven markers that were converted into single nucleotide polymorphism markers for high-throughput genotyping. The allele frequencies in both breeds were investigated for discrimination ability using PCR-RFLP. The probability of identifying F1 was 0.9168 and probability of misjudgment was 0.0066 using four selected markers. The markers could be useful for discriminating between Japanese Black and F1 and would contribute to the prevention of falsified breed labeling of meat.

      • SCIESCOPUSKCI등재

        Genealogical Relationship between Pedigree and Microsatellite Information and Analysis of Genetic Structure of a Highly Inbred Japanese Black Cattle Strain

        Sasazaki, S.,Honda, T.,Fukushima, M.,Oyama, K.,Mannen, H.,Mukai, F.,Tsuji, S. Asian Australasian Association of Animal Productio 2004 Animal Bioscience Vol.17 No.10

        Japanese Black cattle of Hyogo prefecture (Tajima strain) are famous for its ability to produce high-quality meat and have been maintained as a closed system for more than 80 years. In order to assess the usefulness of microsatellite markers in closed cattle populations, and evaluate the genetic structure of the Tajima strain, we analyzed representative dams of the Tajima strain comprised of the substrains Nakadoi and Kinosaki. Genetic variability analyses indicated low genetic diversity in the Tajima strain. In addition, a recent genetic bottleneck, which could be accounted for by the high level of inbreeding, was detected in both substrains. In phylogenetic analyses, relationship coefficients and genetic distances between individuals were calculated using pedigree and microsatellite information. Two phylogenetic trees were constructed from microsatellite and pedigree information using the UPGMA method. Both trees illustrated that most individuals were distinguished clearly on the basis of the two substrains, although in the microsatellite tree some individuals appeared in clusters of different substrains. Comparing the two phylogenetic trees revealed good consistency between the microsatellite analysis tree and the pedigree information. The correlation coefficient between genetic distances derived from microsatellite and pedigree information was 0.686 with a high significance level (p<0.001). These results indicated that microsatellite information may provide data substantially equivalent to pedigree information even in unusually inbred herds of cattle, and suggested that microsatellite markers may be useful in revealing genetic structure without accurate or complete pedigree nformation. Japanese Black cattle of Hyogo prefecture (Tajima strain) are famous for its ability to produce high-quality meat and have been maintained as a closed system for more than 80 years. In order to assess the usefulness of microsatellite markers in closed cattle populations, and evaluate the genetic structure of the Tajima strain, we analyzed representative dams of the Tajima strain comprised of the substrains Nakadoi and Kinosaki. Genetic variability analyses indicated low genetic diversity in the Tajima strain. In addition, a recent genetic bottleneck, which could be accounted for by the high level of inbreeding, was detected in both substrains. In phylogenetic analyses, relationship coefficients and genetic distances between individuals were calculated using pedigree and microsatellite information. Two phylogenetic trees were constructed from microsatellite and pedigree information using the UPGMA method. Both trees illustrated that most individuals were distinguished clearly on the basis of the two substrains, although in the microsatellite tree some individuals appeared in clusters of different substrains. Comparing the two phylogenetic trees revealed good consistency between the microsatellite analysis tree and the pedigree information. The correlation coefficient between genetic distances derived from microsatellite and pedigree information was 0.686 with a high significance level (p<0.001). These results indicated that microsatellite information may provide data substantially equivalent to pedigree information even in unusually inbred herds of cattle, and suggested that microsatellite markers may be useful in revealing genetic structure without accurate or complete pedigree information.

      • SCIESCOPUSKCI등재

        Mitochondrial DNA Variation and Genetic Relationships in Japanese and Korean Cattle

        Sasazaki, S.,Odahara, S.,Hiura, C.,Mukai, F.,Mannen, H. Asian Australasian Association of Animal Productio 2006 Animal Bioscience Vol.19 No.10

        The complete mtDNA D-loop regions of Japanese and Korean cattle were analyzed for their mtDNA variations and genetic relationships. Sequencing the 30 Higo substrain and 30 Tosa substrain of Japanese Brown, respectively 12 and 17 distinct Bos haplotypes were identified from 77 polymorphic nucleotide sites. In order to focus on the relationships among Japanese and Korean cattle, two types of phylogenetic tree were constructed using individual sequences; first, a neighbor-joining tree with all sequences and second, reduced median networks within each Japanese and Korean cattle group. The trees revealed that two major mtDNA haplotype groups, T3 and T4, were represented in Japanese and Korean cattle. The T4 haplogroup predominated in Japanese Black and Japanese Brown cattle (frequency of 43.3-66.7%), while the T3 haplogroup was predominant (83.3%) and T4 was represented only twice in the Korean cattle. The results suggested that the mitochondrial origins of Japanese Brown were Japanese ancient cattle as well as Japanese Black in despite of the considerable introgression of Korean and European cattle into Japanese Brown.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼