RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        SiC-based materials produced by explosive compaction of powders without sintering

        Krokhalev Aleksandr,Kharlamov Valentin,Kuz’min Sergey,Lysak Vladimir 한국세라믹학회 2023 한국세라믹학회지 Vol.60 No.5

        The explosive compaction technique achieves a considerably higher pressure compared to conventional powder metallurgy. This study demonstrates the fundamental possibility of obtaining SiC-based materials by explosive compaction without sintering. It has been determined that an increase in the compacting pressure from 12 to 16.5 GPa and a decrease in the titanium binder content from 50 to 20 vol.% are accompanied by a decrease in the compacted residual porosity of the material from 7 to 2%. In this case, the best compaction is achieved at a lower metal binder content. Microstructure analysis of the obtained materials showed that explosive compaction allows titanium particles to retain their size and form isolated inclusions in a continuous silicon carbide matrix. The initially splinter-shaped particles of the matrix transform, which ensures tight contact between them. To form strong boundaries between powder mix components at the explosive compaction stage, the loading modes should provide heating of the material during shock wave compression to above 780 °C. As a result, the hardness of the material containing 20 vol.% titanium reached 1300 HV. To retain the initial phase composition of silicon carbide and titanium powder mixtures during explosive compaction, the upper temperature limit should be 840 °C. The loading modes accompanied by heating to a higher temperature initiate a chemical interaction between the powder mix components.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼