RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Advances in the treatment of newly diagnosed primary central nervous system lymphomas

        Liren Qian,Ciprian Tomuleasa,Ioan-Alexandru Florian,Jianliang Shen,Ioan-Stefan Florian,Mihnea Zdrenghea,Delia Dima 대한혈액학회 2017 Blood Research Vol.52 No.3

        Primary central nervous system lymphoma (PCNSL) is a type of highly invasive non-Hodgkin lymphoma. With a growing number of organ transplantation and im-munosuppressant therapy, the incidence of PCNSL has been growing rapidly in recent years, which is attributed to the increased incidence of HIV/AIDS, a prominent risk factor for developing PCNSL. The rising rate of PCNSL incidence is the highest among the intra-cranial tumors. In the past 20 years, dozens of clinical trials related to PCNSL have been registered, but adequate therapeutics are still challenging. Currently, the chemotherapy regimens based on high-dose methotrexate and whole-brain radiotherapy are the two main therapeutic options; however, the toxicity associated with those is the main problem that challenges medical researchers. Novel agents and therapeutic strategies have been developed in recent years. In the current review, we describe advances in the treatment of PCNSL and discuss novel therapeutic approaches currently in development, such as the use of rituximab, disruption of the blood-brain barrier, and state-of-the-art radiotherapy.

      • KCI등재

        Advances in the treatment of newly diagnosed primary central nervous system lymphomas

        Liren Qian,Ciprian Tomuleasa,Ioan-Alexandru Florian,Jianliang Shen,Ioan-Stefan Florian,Mihnea Zdrenghea,Delia Dima 대한혈액학회 2017 Blood Research Vol.52 No.3

        Primary central nervous system lymphoma (PCNSL) is a type of highly invasive non-Hodgkin lymphoma. With a growing number of organ transplantation and im-munosuppressant therapy, the incidence of PCNSL has been growing rapidly in recent years, which is attributed to the increased incidence of HIV/AIDS, a prominent risk factor for developing PCNSL. The rising rate of PCNSL incidence is the highest among the intra-cranial tumors. In the past 20 years, dozens of clinical trials related to PCNSL have been registered, but adequate therapeutics are still challenging. Currently, the chemotherapy regimens based on high-dose methotrexate and whole-brain radiotherapy are the two main therapeutic options; however, the toxicity associated with those is the main problem that challenges medical researchers. Novel agents and therapeutic strategies have been developed in recent years. In the current review, we describe advances in the treatment of PCNSL and discuss novel therapeutic approaches currently in development, such as the use of rituximab, disruption of the blood-brain barrier, and state-of-the-art radiotherapy.

      • KCI등재

        Carbon molecular sieves from soybean straw-based activated carbon for CO2/CH4 separation

        Yuxian Xu,Xiaochuan Chen,Dan Wu,Yongjin Luo,Xinping Liu,Qingrong Qian,Liren Xiao,Qinghua Chen 한국탄소학회 2018 Carbon Letters Vol.25 No.-

        Soybean straw (SS)-based activated carbon was employed as a precursor to prepare carbon molecular sieves (CMSs) via chemical vapor deposition (CVD) technique using methane as carbon source. Prior to the CVD process, SS was activated by 0.5 wt% ZnCl2, followed by a carbonization at 500°C for 1 h in N2 atmosphere. N2 (77 K) adsorption-desorption and CO2 (273 K) adsorption tests were carried out to analyze the pore structure of the prepared CMSs. The results show that increasing the deposition temperature, time or methane flow rate leads the decrease in N2 adsorption capacity, micropore volume and average pore diameter of CMSs. The adsorption selectivity coefficient of CO2/CH4 achieves as high as 20.8 over CMSs obtained under the methane flow rate of 30 mL min–1 at 800°C for 70 min. The study demonstrates the prepared CMSs are a candidate adsorbent for CO2/CH4 separation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼