RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Carbamazepine and oxcarbazepine removal in pharmaceutical wastewater treatment plant using a mass balance approach: A case study

        Kshitiz Dwivedi,Amruta Morone,Vishwas Pratape,Tapan Chakrabarti,Ram Avtar Pandey 한국화학공학회 2017 Korean Journal of Chemical Engineering Vol.34 No.10

        The manufacturing of the antiepileptics, carbamazepine (CBZ) and oxcarbazepine (oxCBZ), results in generation of wastewater containing these micropollutants which exhibit toxicity even at trace levels. Therefore, we focused on monitoring their fate and removal in various units of a full-scale wastewater treatment plant (WWTP) using mass balance approach. An apparent CBZ removal of 50±3% was observed by conventional activated sludge process in the biological treatment unit, whereas oxCBZ still persisted after the biological treatment and showed negative mass balance. However, reverse osmosis resulted in 91% oxCBZ removal, whereas CBZ still continued to persist as a result of lower solubility of CBZ as compared to oxCBZ. Only 3% CBZ exhibited sorption onto the suspended solids and sludge, which was negligible for oxCBZ, thus demonstrating their tendency to remain in aqueous phase. Additionally, we attempted to understand the fundamental mechanism behind the removal of these pharmaceuticals and it was apparently the collective effect of sorption, mineralization, biotransformation, biodegradation, phototransformation/ photodegradation, etc. Thus, the integrative data presented in the present study on productivity of these pharmaceuticals, their mass loading in influent and effluents allied with their removal efficiency will be significantly constructive in benchmarking the operational effectiveness through operational optimization and design improvement of the current conventional treatment plant.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼