RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Femtoliter-scale patterning by high-speed, highly scaled inverse gravure printing.

        Kitsomboonloha, Rungrot,Morris, S J S,Rong, Xiaoying,Subramanian, Vivek American Chemical Society 2012 Langmuir Vol.28 No.48

        <P>Pattern printing techniques have advanced rapidly in the past decade, driven by their potential applications in printed electronics. Several printing techniques have realized printed features of 10 μm or smaller, but unfortunately, they suffer from disadvantages that prevent their deployment in real applications; in particular, process throughput is a significant concern. Direct gravure printing is promising in this regard. Gravure printing delivers high throughput and has a proven history of being manufacturing worthy. Unfortunately, it suffers from scalability challenges because of limitations in roll manufacturing and limited understanding of the relevant printing mechanisms. Gravure printing involves interactions between the ink, the patterned cylinder master, the doctor blade that wipes excess ink, and the substrate to which the pattern is transferred. As gravure-printed features are scaled, the associated complexities are increased, and a detailed study of the various processes involved is lacking. In this work, we report on various gravure-related fluidic mechanisms using a novel highly scaled inverse direct gravure printer. The printer allows the overall pattern formation process to be studied in detail by separating the entire printing process into three sequential steps: filling, wiping, and transferring. We found that pattern formation by highly scaled gravure printing is governed by the wettability of the ink to the printing plate, doctor blade, and substrate. These individual functions are linked by the apparent capillary number (Ca); the printed volume fraction (φ(p)) of a feature can be constructed by incorporating these basis functions. By relating Ca and φ(p), an optimized operating point can be specified, and the associated limiting phenomena can be identified. We used this relationship to find the optimized ink viscosity and printing speed to achieve printed polymer lines and line spacings as small as 2 μm at printing speeds as high as 1 m/s.</P>

      • SCISCIESCOPUS

        High‐Performance Printed Transistors Realized Using Femtoliter Gravure‐Printed Sub‐10 μm Metallic Nanoparticle Patterns and Highly Uniform Polymer Dielectric and Semiconductor Layers

        Kang, Hongki,Kitsomboonloha, Rungrot,Jang, Jaewon,Subramanian, Vivek WILEY‐VCH Verlag 2012 Advanced Materials Vol.24 No.22

        <P><B>Using a novel high‐speed, femtoliter‐scale, micro‐gravure printing with unprecedented scaling to the sub‐10 μm regime</B> and appropriately formulated, characterized, and optimized nanoparticle and polymer ink materials, highly scaled organic thin‐film‐transistors (OTFTs) are realized. They have excellent DC and AC characteristics and achieve record transition frequencies of 300 kHz, which opens up new classes of applications.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼