RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Metabolic Regulation of Gene Expression by Histone Lysine β-Hydroxybutyrylation

        Xie, Zhongyu,Zhang, Di,Chung, Dongjun,Tang, Zhanyun,Huang, He,Dai, Lunzhi,Qi, Shankang,Li, Jingya,Colak, Gozde,Chen, Yue,Xia, Chunmei,Peng, Chao,Ruan, Haibin,Kirkey, Matt,Wang, Danli,Jensen, Lindy M. Elsevier 2016 Molecular cell Vol.62 No.2

        <P><B>Summary</B></P> <P>Here we report the identification and verification of a β-hydroxybutyrate-derived protein modification, lysine β-hydroxybutyrylation (Kbhb), as a new type of histone mark. Histone Kbhb marks are dramatically induced in response to elevated β-hydroxybutyrate levels in cultured cells and in livers from mice subjected to prolonged fasting or streptozotocin-induced diabetic ketoacidosis. In total, we identified 44 histone Kbhb sites, a figure comparable to the known number of histone acetylation sites. By ChIP-seq and RNA-seq analysis, we demonstrate that histone Kbhb is a mark enriched in active gene promoters and that the increased H3K9bhb levels that occur during starvation are associated with genes upregulated in starvation-responsive metabolic pathways. Histone β-hydroxybutyrylation thus represents a new epigenetic regulatory mark that couples metabolism to gene expression, offering a new avenue to study chromatin regulation and diverse functions of β-hydroxybutyrate in the context of important human pathophysiological states, including diabetes, epilepsy, and neoplasia.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Lysine β-hydroxybutyrylation (Kbhb) is a new type of histone mark </LI> <LI> 44 non-redundant histone Kbhb sites are identified in human and mouse cells </LI> <LI> Histone Kbhb increases under starvation and STZ-induced ketoacidosis </LI> <LI> Starvation-induced H3K9bhb is associated with active gene expression </LI> </UL> </P> <P><B>Graphical Abstract</B></P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼