RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Characterization of Forest Fire Emissions and Their Possible Toxicological Impacts on Human Health

        Kibet, Joshua,Bosire, Josephate,Kinyanjui, Thomas,Lang'at, Moses,Rono, Nicholas Institute of Forest Science 2017 Journal of Forest Science Vol.33 No.2

        In flight particulate matter particularly emissions generated by incomplete combustion processes has become a subject of global concern due to the health problems and environmental impacts associated with them. This has compelled most countries to set standards for coarse and fine particles due to their conspicuous impacts on environment and public health. This contribution therefore explores forest fire emissions and how its particulates affects air quality, damage to vegetation, water bodies and biological functions as architects for lung diseases and other degenerative illnesses such as oxidative stress and aging. Soot was collected from simulated forest fire using a clean glass surface and carefully transferred into amber vials for analysis. Volatile components of soot were collected over 10 mL dichloromethane and analyzed using a QTOF Premier-Water Corp Liquid Chromatography hyphenated to a mass selective detector (MSD), and Gas Chromatograph coupled to a mass spectrometer (GC-MS). To characterize the size and surface morphology of soot, a scanning electron microscope (SEM) was used. The characterization of molecular volatiles from simulated forest fire emissions revealed long chain compounds including octadec-9-enoic acid, octadec-6-enoic acid, cyclotetracosane, cyclotetradecane, and a few aromatic hydrocarbons (benzene and naphthalene). Special classes of organics (dibenzo-p-dioxin and 2H-benzopyran) were also detected as minor products. Dibenzo-p-dioxin for instance in chlorinated form is one of the deadliest environmental organic toxins. The average particulate size of emissions using SEM was found to be $11.51{\pm}4.91{\mu}m$. This study has shown that most of the emissions from simulated forest fire fall within $PM_{10}$ particulate size. The molecular by-products of forest fire and particulate emissions may be toxic to both human and natural ecosystems, and are possible precursors for various respiratory ailments and cancers. The burning of a forest by natural disasters or man-made fires results in the destruction of natural habitats and serious air pollution.

      • KCI등재

        Characterization of Forest Fire Emissions and Their Possible Toxicological Impacts on Human Health

        Joshua Kibet,Josephate Bosire,Thomas Kinyanjui,Moses Lang’at,Nicholas Rono 강원대학교 산림과학연구소 2017 Journal of Forest Science Vol.33 No.2

        In flight particulate matter particularly emissions generated by incomplete combustion processes has become a subject of global concern due to the health problems and environmental impacts associated with them. This has compelled most countries to set standards for coarse and fine particles due to their conspicuous impacts on environment and public health. This contribution therefore explores forest fire emissions and how its particulates affects air quality, damage to vegetation, water bodies and biological functions as architects for lung diseases and other degenerative illnesses such as oxidative stress and aging. Soot was collected from simulated forest fire using a clean glass surface and carefully transferred into amber vials for analysis. Volatile components of soot were collected over 10 mL dichloromethane and analyzed using a QTOF Premier-Water Corp Liquid Chromatography hyphenated to a mass selective detector (MSD), and Gas Chromatograph coupled to a mass spectrometer (GC-MS). To characterize the size and surface morphology of soot, a scanning electron microscope (SEM) was used. The characterization of molecular volatiles from simulated forest fire emissions revealed long chain compounds including octadec-9-enoic acid, octadec-6-enoic acid, cyclotetracosane, cyclotetradecane, and a few aromatic hydrocarbons (benzene and naphthalene). Special classes of organics (dibenzo-p-dioxin and 2H-benzopyran) were also detected as minor products. Dibenzo-p-dioxin for instance in chlorinated form is one of the deadliest environmental organic toxins. The average particulate size of emissions using SEM was found to be 11.51±4.91 m. This study has shown that most of the emissions from simulated forest fire fall within PM10 particulate size. The molecular by-products of forest fire and particulate emissions may be toxic to both human and natural ecosystems, and are possible precursors for various respiratory ailments and cancers. The burning of a forest by natural disasters or man-made fires results in the destruction of natural habitats and serious air pollution.

      • KCI등재

        Comparative transcriptome analysis of berry-sizing effects of gibberellin ( GA3) on seedless Vitis vinifera L.

        Xicheng Wang,Mizhen Zhao,Weimin Wu,Nicholas Kibet Korir,Yaming Qian,Zhuangwei Wang 한국유전학회 2017 Genes & Genomics Vol.39 No.5

        Gibberellin (GA) is widely used to enlarge berries of seedless table grape and raisin varieties. The molecular mechanism underlying the berry-sizing effect of gibberelins is however poorly understood. We used a high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of berries from Vitis vinifera L. ‘Summer Black’ treated with GA3 with the aim of increasing the understanding of molecular mechanisms underlying the species’ expansion growth responses to exogenous GA3 hormone application. A total of 591 differentially expressed genes (DEGs) were detected including genes involved in fruit expansion and growth. There were four expansion genes, three cellulose synthase A catalytic subunit genes, four cellulose synthaselike protein genes and three xyloglucan endotransglucosylase genes. Differential expression of these genes could potentially explain the difference in the growth and sizes of fruits from control (CK) and GA3 treated (+GA) vines. In addition, the expression patterns of 14 DEGs were validated by qRT-PCR, and the outcomes agreed highly with the RNA-Seq results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to better understand the functions of these DEGs. We also identified a large number of single nucleotide polymorphism and insertion/deletion markers, which will be a rich resource for future marker development and breeding research in grape. The transcriptome analysis provides valuable information for furthering our understanding of the molecular mechanisms that regulate the fruit expansion growth, and adds to the growing foundation for future genetic and functional genomic studies in grape fruit.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼