RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Improvement of Human-Object Observation System

        Kazuki YOKOI,Mihoko NIITSUMA,Hideki HASHIMOTO 제어로봇시스템학회 2009 제어로봇시스템학회 국제학술대회 논문집 Vol.2009 No.8

        In this paper, we will present an improved system which observes human activities. We have tried to describe the activities by objects usage because there are so many kinds of objects in environments and people use them to accomplish their activities. Therefore, by observing objects we can extract more information about activities of human and this may help us to estimate what people are doing in the space. Methods to obtain objects usage are explained and improved in this paper. We also evaluated the system from experiments.

      • KCI등재

        An indoor thermal environment design system for renovation using augmented reality

        Tomohiro Fukuda,Kazuki Yokoi,Nobuyoshi Yabuki,Ali Motamedi 한국CDE학회 2019 Journal of computational design and engineering Vol.6 No.2

        The renovation projects of buildings and living spaces, which aim to improve the thermal environment, are gaining importance because of energy saving effects and occupants’ health considerations. However, the indoor thermal design is not usually performed in a very efficient manner by stakeholders, due to the limitations of a sequential waterfall design process model, and due to the difficulty in comprehending the CFD simulation results for stakeholders. On the other hand, indoor greenery has been introduced to build-ings as a method for adjusting the thermal condition. Creating a VR environment, which can realistically and intuitively visualize a thermal simulation model is very time consuming and the resulting VR envi-ronment created by 3D computer graphics objects is disconnected from the reality and does not allow design stakeholders to experience the feelings of the real world. Therefore, the objective of this research is to develop a new AR-based methodology for intuitively visualizing indoor thermal environment for building renovation projects. In our proposed system, easy-to-comprehend visualization of CFD results augment the real scenes to provide users with information about thermal effects of their renovation design alternatives interactively. Case studies to assess the effect of indoor greenery alternatives on the thermal environment are performed. In conclusion, integrating CFD and AR provides users with a more natural feeling of the future thermal environment. The proposed method was evaluated feasible and effective.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼