RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Natural bioceramics: our experience with changing perspectives in the reconstruction of maxillofacial skeleton

        Vivekanand Sabanna Kattimani,Krishna Prasad Lingamaneni Department of Oral and Maxillofacial Surgery,Sibar Institute of Dental Sciences,Guntur 대한구강악안면외과학회 2019 대한구강악안면외과학회지 Vol.45 No.1

        Objectives: Various bone graft substitute materials are used to enhance bone regeneration in the maxillofacial skeleton. In the recent past, synthetic graft materials have been produced using various synthetic and natural calcium precursors. Very recently, eggshell-derived hydroxyapatite (EHA) has been evaluated as a synthetic bone graft substitute. To assess bone regeneration using EHA in cystic and/or apicectomy defects of the jaws through clinical and radiographic evaluations. Materials and Methods: A total of 20 patients were enrolled in the study protocol (CTRI/2014/12/005340) and were followed up at 4, 8, 12, and 24 weeks to assess the amount of osseous fill through digital radiographs/cone-beam computed tomography along with clinical parameters and complications. Wilcoxon matched pairs test, means, percentages and standard deviations were used for the statistical analysis. Results: The sizes of the lesions in the study ranged from 1 to 4 cm and involved one to four teeth. The study showed significant changes in the formation of bone, the merging of material and the surgical site margins from the first week to the first month in all patients (age range, 15-50 years) irrespective of the size of the lesions and the number of teeth involved. Bone formation was statistically significant from the fourth to the eighth week, and the trabecular pattern was observed by the end of 12 weeks with uneventful wound healing. Conclusion: EHA showed enhancement of bone regeneration, and healing was complete by the end of 12 weeks with a trabecular pattern in all patients irrespective of the size of the lesion involved. The study showed enhancement of bone regeneration in the early bone formative stage within 12 weeks after grafting. EHA is cost effective and production is environment friendly with no disease transfer risks. Thus, natural bioceramics will play an important role in the reduction of costs involved in grafting and reconstruction.

      • KCI등재

        Socket preservation using eggshell-derived nanohydroxyapatite with platelet-rich fibrin as a barrier membrane: a new technique

        Vivekanand Sabanna Kattimani,Krishna Prasad Lingamaneni,Girija Easwaradas Kreedapathi,Kiran Kumar Kattappagari 대한구강악안면외과학회 2019 대한구강악안면외과학회지 Vol.45 No.6

        Objectives: Socket grafting is vital to prevent bone resorption after tooth extraction. Several techniques to prevent resorption have been described, and various bone graft substitutes have been developed and used with varying success. We conducted this pilot study to evaluate the performance of nanohydroxyapatite (nHA) derived from chicken eggshells in socket preservation. Materials and Methods: This was a prospective, single center, outcome assessor-blinded evaluation of 23 sockets (11 patients) grafted with nHA and covered with platelet-rich fibrin (PRF) membrane as a barrier. Bone width and radiographic bone density were measured using digital radiographs at 1, 12, and 24 weeks post-procedure. Postoperative histomorphometric and micro-computed tomography (CT) evaluation were performed. The study protocol was approved by the Institutional Ethics Committee. Results: All patients had uneventful wound healing without graft material displacement or leaching despite partial exposure of the grafted socket. Tissue re-epithelialized with thick gingival biotype (>3 mm). Width of the bone was maintained and radiographic density increased significantly with a trabecular pattern (73.91% of sockets) within 12 weeks. Histomorphometric analysis showed 56.52% Grade 3 bone formation and micro-CT analysis revealed newly formed bone with interconnecting trabeculae. Conclusion: Use of a PRF membrane with nHA resulted in good bone regeneration in sockets. Use of a PRF membrane prevents periosteal-releasing incisions for primary closure, thereby facilitating the preservation of keratinized mucosa and gingival architecture. This technique, which uses eggshell-derived nHA and PRF membrane from the patient’s own blood, is innovative and is free of disease transfer risks. nHA is a promising economic bone graft substitute for bone regeneration and reconstruction because of the abundant availability of eggshell waste as a raw material.

      • Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment

        Vinyas, M.,Kattimani, S.C. Techno-Press 2017 Coupled systems mechanics Vol.6 No.3

        In this article, the multiphysics response of magneto-electro-elastic (MEE) cantilever beam subjected to thermo-mechanical loading is analysed. The equilibrium equations of the system are obtained with the aid of the principle of total potential energy. The constitutive equations of a MEE material accounting the thermal fields are used for analysis. The corresponding finite element (FE) formulation is derived and model of the beam is generated using an eight noded 3D brick element. The 3D FE formulation developed enables the representation of governing equations in all three axes, achieving accurate results. Also, geometric, constitutive and loading assumptions required to dimensionality reduction can be avoided. Numerical evaluation is performed on the basis of the derived formulation and the influence of various mechanical loading profiles and volume fractions on the direct quantities and stresses is evaluated. In addition, an attempt has been made to compare the individual effect of thermal and mechanical loading with the combined effect. It is believed that the numerical results obtained helps in accurate design and development of sensors and actuators.

      • SCIESCOPUS

        Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam

        Vinyas, M.,Kattimani, S.C. Techno-Press 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.63 No.4

        The present article examines the static response of multilayered magneto-electro-elastic (MEE) beam in thermal environment through finite element (FE) methods. On the basis of the minimum total potential energy principle and the coupled constitutive equations of MEE material, the FE equilibrium equations of cantilever MEE beam is derived. Maxwell's equations are considered to establish the relation between electric field and electric potential; magnetic field and magnetic potential. A simple condensation approach is employed to solve the global FE equilibrium equations. Further, numerical evaluations are made to examine the influence of different in-plane and through-thickness temperature distributions on the multiphysics response of MEE beam. A parametric study is performed to evaluate the effect of stacking sequence and different temperature profiles on the direct and derived quantities of MEE beam. It is believed that the results presented in this article serve as a benchmark for accurate design and analysis of the MEE smart structures in thermal applications.

      • A 3D finite element static and free vibration analysis of magneto-electro-elastic beam

        Vinyas., M,Kattimani, S.C. Techno-Press 2017 Coupled systems mechanics Vol.6 No.4

        In this paper, free vibration and static response of magneto-electro-elastic (MEE) beams has been investigated. To this end, a 3D finite element formulation has been derived by minimization the total potential energy and linear constitutive equation. The coupling between elastic, electric and magnetic fields can have a significant influence on the stiffness and in turn on the static behaviour of MEE beam. Further, different Barium Titanate ($BaTiO_3$) and Cobalt Ferric oxide ($CoFe_2O_4$) volume fractions results in indifferent coupled response. Therefore, through the numerical examples the influence of volume fractions and boundary conditions on the natural frequencies of MEE beam is illustrated. The study is extended to evaluate the static response of MEE beam under various forms of mechanical loading. It is seen from the numerical evaluation that the volume fractions, loading and boundary conditions have a significant effect on the structural behaviour of MEE structures. The observations made here may serve as benchmark solutions in the optimum design of MEE structures.

      • SCIESCOPUS

        Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate

        Kiran, M.C.,Kattimani, S.C. Techno-Press 2018 Smart Structures and Systems, An International Jou Vol.21 No.4

        This article presents a finite element (FE) model to assess the free vibration and static response of a functionally graded skew magneto-electro-elastic (FGSMEE) plate. Through the thickness material grading of FGSMEE plate is achieved using power law distribution. The coupled constitutive equations along with the total potential energy approach are used to develop the FE model of FGSMEE plate. The transformation matrix is utilized in bringing out the element matrix corresponding to the global axis to a local axis along the skew edges to specify proper boundary conditions. The effect of skew angle on the natural frequency of an FGSMEE plate is analysed. Further, the study includes the evaluation of the static behavior of FGSMEE plate for various skew angles. The influence of skew angle on the primary quantities such as displacements, electric potential, and magnetic potential, and secondary quantities such as stresses, electric displacement and magnetic induction is studied in detail. In addition, the effect of power-law gradient, thickness ratio, boundary conditions and aspect ratio on the free vibration and static response characteristics of FGSMEE plate has been investigated.

      • KCI등재

        A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading

        M. Vinyas,S.C. Kattimani 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.62 No.5

        In this article, static analysis of a magneto-electro-elastic (MEE) beam subjected to various thermal loading and boundary conditions has been investigated. Influence of pyroeffects (pyroelectric and pyromagnetic) on the direct quantities (displacements and the potentials) of the MEE beam under different boundary conditions is studied. The finite element (FE) formulation of the MEE beam is developed using the total potential energy principle and the constitutive equations of the MEE material taking into account the coupling between elastic, electric, magnetic and thermal properties. Using the Maxwell electrostatic and electromagnetic relations, variation of stresses, displacements, electric and magnetic potentials along the length of the MEE beam are investigated. Effect of volume fractions, aspect ratio and boundary conditions on the direct quantities in thermal environment has been determined. The present investigation may be useful in design and analysis of magnetoelectroelastic smart structures and sensor applications.

      • Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities

        H.S. Naveen Kumar,Subhaschandra Kattimani 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.82 No.4

        This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved firstorder shear deformation shell theory (IFSDST) and von Karman’s type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton’s principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.

      • KCI등재

        Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

        M.C. Kiran,S.C. Kattimani 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.64 No.6

        This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

      • KCI등재

        Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory

        M. Vinyas,D. Harursampath,S.C. Kattimani 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.73 No.6

        In this article, the static responses of layered magneto-electro-thermo-elastic (METE) plates in thermal environment have been investigated through FE methods. By using Reddy’s third order shear deformation theory (TSDT) in association with the Hamilton’s principle, the direct and derived quantities of the coupled system have been obtained. The coupled governing equations of METE plates have been derived through condensation technique. Three layered METE plates composed of piezoelectric and piezomagnetic phases are considered for evaluation. For investigating the correctness and accuracy, the results in this article are validated with previous researches. In addition, a special attention has been paid to evaluate the influence of different electro-magnetic boundary conditions and pyrocoupling on the coupled response of METE plates. Finally, the influence of stacking sequences, magnitude of temperature load and aspect ratio on the coupled static response of METE plates are investigated in detail.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼