RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Three dimensional static and dynamic analysis of two dimensional functionally graded annular sector plates

        Asemi, Kamran,Salehi, Manouchehr,Sadighi, Mojtaba Techno-Press 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.51 No.6

        In this paper, three dimensional static and dynamic analyses of two dimensional functionally graded annular sector plates have been investigated. The material properties vary through both the radial and axial directions continuously. Graded finite element and Newmark direct integration methods have been used to solve the 3D-elasticity equations in time and space domains. The effects of power law exponents and different boundary conditions on the behavior of FGM annular sector plate have been investigated. Results show that using 2D-FGMs and graded elements have superiority over the homogenous elements and 1D-FGMs. The model has been compared with the result of a 1D-FGM annular sector plate and it shows good agreement.

      • KCI등재

        Three dimensional static and dynamic analysis of two dimensional functionally graded annular sector plates

        Kamran Asemi,Manouchehr Salehi,Mojtaba Sadighi 국제구조공학회 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.51 No.6

        In this paper, three dimensional static and dynamic analyses of two dimensional functionally graded annular sector plates have been investigated. The material properties vary through both the radial and axial directions continuously. Graded finite element and Newmark direct integration methods have been used to solve the 3D-elasticity equations in time and space domains. The effects of power law exponents and different boundary conditions on the behavior of FGM annular sector plate have been investigated. Results show that using 2D-FGMs and graded elements have superiority over the homogenous elements and 1D-FGMs. The model has been compared with the result of a 1D-FGM annular sector plate and it shows good agreement.

      • The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity

        Lingqin Xia,Ruiquan Wang,Guang Chen,Kamran Asemi,Abdelouahed Tounsi Techno-Press 2023 Advances in nano research Vol.14 No.4

        In this study, free vibration analysis of functionally graded (FG) porous truncated conical shell panels reinforced by graphene platelets (GPLs) has been investigated for the first time. Additionally, the effect of three different types of porosity distribution and five different types of GPLs patterns on dynamic response of the shell are also studied. Halpin-Tsai micromechanical model and Voigt's rule are used to determine Young modulus, shear modulus and Poisson's ratio with mass densities of the shell, respectively. The main novelties of present study are: applying 3D elasticity theory and the finite element method in conjunction with Rayleigh-Ritz method to give more accurate results unlike other simplified shell theories, and also presenting a general 3D solution in cylindrical coordinate system that can be used for analyses of different structures such as circular, annular and annular sector plates, cylindrical shells and panels, and conical shells and panels. A convergence study is performed to justify the correctness of the obtained solution and numerical results. The impact of porosity and GPLs patterns, the volume of voids, the weight fraction of graphene nanofillers, semi vertex and span angles of the cone, and various boundary conditions on natural frequencies of the functionally graded panel have been comprehensively studied and discussed. The results show that the most important parameter on dynamic response of FG porous truncated conical panel is the weight fraction of nanofiller and adding 1% weight fraction of nanofiller could increase 57% approximately the amounts of natural frequencies of the shell. Moreover, the porosity distribution has great effect on the value of natural frequency of structure rather than the porosity coefficient.

      • Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets

        Kiarasi, Faraz,Babaei, Masoud,Mollaei, Somayeh,Mohammadi, Mokhtar,Asemi, Kamran Techno-Press 2021 Advances in nano research Vol.11 No.4

        Natural frequency analysis of functionally graded porous joined truncated conical-cylindrical shell reinforced by graphene platelet is investigated in this paper. The structure is consisting of a layered model with five kinds of distribution of graphene platelets in a metallic matrix containing open-cell interior pores. To calculate the effective properties of the porous nanocomposite joined shell, the generalized rule of mixture and the modified Halpin-Tsai equations are employed. Four different porosity distributions are assumed along the shell thickness: two kinds of symmetric functionally graded distributions, non-symmetric functionally graded distributions and uniform distribution of porosity. Graded finite element method (GFEM) based on Rayleigh-Ritz energy formulation has been used to solve 2D- axisymmetric elasticity equations. A parametric study is also conducted to show the effects of different geometric parameters, boundary conditions, weight fraction of graphene platelets, porosity coefficient, distribution of porosity and dispersion pattern of graphene platelets on the natural frequencies and mode shapes of the structure.

      • Free vibration analysis of FG porous spherical cap reinforced by graphene platelet resting on Winkler foundation

        Xiangqian Shen,Tong Li,Lei Xu,Faraz Kiarasi,Masoud Babaei,Kamran Asemi Techno-Press 2024 Advances in nano research Vol.16 No.1

        In this study, free vibration analysis of FG porous spherical cap reinforced by graphene platelets resting on Winkler-type elastic foundation has been surveyed for the first time. Three different types of porosity patterns are considered for the spherical cap whose two types of porosity patterns in the metal matrix are symmetric and the other one is uniform. Besides, five GPL patterns are assumed for dispersing of GPLs in the metal matrix. Tsai-Halpin and extended rule of the mixture are used to determine the Young modulus and mass density of the shell, respectively. Employing 3D FEM elasticity in conjunction with Hamilton's Principle, the governing motion equations of the structure are obtained and solved. The impact of various parameters including porosity coefficient, various porosity distributions in conjunction with different GPL patterns, the weight fraction of graphene Nano fillers, polar angles and stiffness coefficient of elastic foundation on natural frequencies of FG porous spherical cap reinforced by GPLs have been reported for the first time.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼