RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A computational investigation on flexural response of laminated composite plates using a simple quasi-3D HSDT

        Kada Draiche,Mahmoud M. Selim,Abdelmoumen Anis Bousahla,Abdelouahed Tounsi,Fouad Bourada,Abdeldjebbar Tounsi,S. R. Mahmoud 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.41 No.5

        In this work, a simple quasi 3-D parabolic shear deformation theory is developed to examine the bending response of antisymmetric cross-ply laminated composite plates under different types of mechanical loading. The main feature of this theory is that, in addition to including the transverse shear deformation and thickness stretching effects, it has only five-unknown variables in the displacement field modeling like Mindlin’s theory (FSDT), yet satisfies the zero shear stress conditions on the top and bottom surfaces of the plate without requiring a shear correction factor. The static version of principle of virtual work was employed to derive the governing equations, while the bending problem for simply supported antisymmetric cross-ply laminated plates was solved by a Navier-type closed-form solution procedure. The adequacy of the proposed model is handled by considering the impact of side-to-thickness ratio on bending response of plate through several illustrative examples. Comparison of the obtained numerical results with the other shear deformation theories leads to the conclusion that the present model is more accurate and efficient in predicting the displacements and stresses of laminated composite plates.

      • A new refined hyperbolic shear deformation theory for laminated composite spherical shells

        Kada Draiche,Abdelouahed Tounsi 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.84 No.6

        In this study, a new refined hyperbolic shear deformation theory (RHSDT) is developed using an equivalent singlelayer shell displacement model for the static bending and free vibration response of cross-ply laminated composite spherical shells. It is based on a new kinematic in which the transverse displacement is approximated as a sum of the bending and shear components, leading to a reduction of the number of unknown functions and governing equations. The proposed theory uses the hyperbolic shape function to account for an appropriate distribution of the transverse shear strains through the thickness and satisfies the boundary conditions on the shell surfaces without requiring any shear correction factors. The shell governing equations for this study are derived in terms of displacement from Hamilton’s principle and solved via a Navier-type analytical procedure. The validity and high accuracy of the present theory are ascertained by comparing the obtained numerical results of displacements, stresses, and natural frequencies with their counterparts generated by some higher-order shear deformation theories. Further, a parametric study examines in detail the effect of both geometrical parameters (i.e., side-to-thickness ratio and curvature-radius-to-side ratio), on the bending and free vibration response of simply supported laminated spherical shells, which can be very useful for many modern engineering applications and their optimization design.

      • SCIESCOPUS

        A refined theory with stretching effect for the flexure analysis of laminated composite plates

        Draiche, Kada,Tounsi, Abdelouahed,Mahmoud, S.R. Techno-Press 2016 Geomechanics & engineering Vol.11 No.5

        This work presents a static flexure analysis of laminated composite plates by utilizing a higher order shear deformation theory in which the stretching effect is incorporated. The axial displacement field utilizes sinusoidal function in terms of thickness coordinate to consider the transverse shear deformation influence. The cosine function in thickness coordinate is employed in transverse displacement to introduce the influence of transverse normal strain. The highlight of the present method is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\neq}0$), the displacement field is constructed with only 5 unknowns, as against 6 or more in other higher order shear and normal deformation theory. Governing equations of the present theory are determined by employing the principle of virtual work. The closed-form solutions of simply supported cross-ply and angle-ply laminated composite plates have been obtained using Navier solution. The numerical results of present method are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy, higher order shear and normal deformation theory (HSNDT) and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory. It can be concluded that the proposed method is accurate and simple in solving the static bending response of laminated composite plates.

      • KCI등재

        Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory

        Kada Draiche,Abdelmoumen Anis Bousahla,Abdelouahed Tounsi,Afaf S. Alwabli,Abdeldjebbar Tounsi,S.R. Mahmoud 사단법인 한국계산역학회 2019 Computers and Concrete, An International Journal Vol.24 No.4

        This paper aims to present an analytical model to predict the static analysis of laminated reinforced composite plates subjected to sinusoidal and uniform loads by using a simple first-order shear deformation theory (SFSDT). The most important aspect of the present theory is that unlike the conventional FSDT, the proposed model contains only four unknown variables. This is due to the fact that the inplane displacement field is selected according to an undetermined integral component in order to reduce the number of unknowns. The governing differential equations are derived by employing the static version of principle of virtual work and solved by applying Navier’s solution procedure. The non-dimensional displacements and stresses of simply supported antisymmetric cross-ply and angle-ply laminated plates are presented and compared with the exact 3D solutions and those computed using other plate theories to demonstrate the accuracy and efficiency of the present theory. It is found from these comparisons that the numerical results provided by the present model are in close agreement with those obtained by using the conventional FSDT.

      • KCI등재

        A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass

        Kada Draiche,Abdelouahed Tounsi,Y. Khalfi 국제구조공학회 2014 Steel and Composite Structures, An International J Vol.17 No.1

        The novelty of this paper is the use of trigonometric four variable plate theory for free vibration analysis of laminated rectangular plate supporting a localized patch mass. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The Hamilton's Principle, using trigonometric shear deformation theory, is applied to simply support rectangular plates. Numerical examples are presented to show the effects of geometrical parameters such as aspect ratio of the plate, size and location of the patch mass on natural frequencies of laminated composite plates. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behavior of laminated rectangular plate supporting a localized patch mass.

      • KCI등재

        A novel refined shear deformation theory for the buckling analysis of thick isotropic plates

        M. Fellah,Kada Draiche,Mohammed Sid Ahmed Houari,Abdelouahed Tounsi,Tareq Saeed,Mohammed Sh Alhodaly,Mohamed Benguediab 국제구조공학회 2019 Structural Engineering and Mechanics, An Int'l Jou Vol.69 No.3

        In present study, a novel refined hyperbolic shear deformation theory is proposed for the buckling analysis of thick isotropic plates. The new displacement field is constructed with only two unknowns, as against three or more in other higher order shear deformation theories. However, the hyperbolic sine function is assigned according to the shearing stress distribution across the plate thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using any shear correction factors. The equations of motion associated with the present theory are obtained using the principle of virtual work. The analytical solution of the buckling of simply supported plates subjected to uniaxial and biaxial loading conditions was obtained using the Navier method. The critical buckling load results for thick isotropic square plates are compared with various available results in the literature given by other theories. From the present analysis, it can be concluded that the proposed theory is accurate and efficient in predicting the buckling response of isotropic plates.

      • KCI등재

        A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates

        Souad Sellam,Kada Draiche,Youcef Tlidji,Farouk Yahia Addou,Abdelkader Benachour 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.75 No.2

        In the present paper, a simple analytical model is developed based on a new refined parabolic shear deformation theory (RPSDT) for free vibration and buckling analysis of orthotropic rectangular plates with simply supported boundary conditions. The displacement field is simpler than those of other higher-order theories since it is modeled with only two unknowns and accounts for a parabolic distribution of the transverse shear stress through the plate thickness. The governing differential equations related to the present theory are obtained from the principle of virtual work, while the solution of the eigenvalue problem is achieved by assuming a Navier technique in the form of a double trigonometric series that satisfy the edge boundary conditions of the plate. Numerical results are presented and compared with previously published results for orthotropic rectangular plates in order to verify the precision of the proposed analytical model and to assess the impacts of several parameters such as the modulus ratio, the side-to-thickness ratio and the geometric ratio on natural frequencies and critical buckling loads. From these results, it can be concluded that the present computations are in excellent agreement with the other higher-order theories.

      • KCI등재

        Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings

        Nasrine Belbachir,Kada Draiche,Abdelmoumen Anis Bousahla,Mohamed Bourada,Abdelouahed Tounsi,M. Mohammadimehr 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.33 No.1

        The present paper addresses a refined plate theoryin order to describe the response of anti-symmetric cross-ply laminated plates subjected to a uniformlydistributed nonlinear thermo-mechanical loading. In the present theory, the undetermined integral terms are used and the variables number is reduced to four instead of five or more in other higher-order theories. The boundary conditions on the top and the bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction factors isavoided. The principle of virtual work is used to obtain governing equations and boundary conditions. Navier solution for simply supported plates is used to derive analytical solutions. For the validation of the present theory, numerical results for displacements and stressesare compared with those of classical, first-order, higher-order and trigonometricshear theories reported in the literature.

      • KCI등재

        A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells

        Othmane Allam,Kada Draiche,Abdelmoumen Anis Bousahla,Fouad Bourada,Abdeldjebbar Tounsi,Kouider Halim Benrahou,S.R. Mahmoud,E.A. Adda Bedia,Abdelouahed Tounsi 사단법인 한국계산역학회 2020 Computers and Concrete, An International Journal Vol.26 No.2

        This research is devoted to investigate the bending and free vibration behaviour of laminated composite/sandwich plates and shells, by applying an analytical model based on a generalized and simple refined higher-order shear deformation theory (RHSDT) with four independent unknown variables. The kinematics of the proposed theoretical model is defined by an undetermined integral component and uses the hyperbolic shape function to include the effects of the transverse shear stresses through the plate/shell thickness; hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by employing the principle of virtual work and solved via Navier-type analytical procedure. To verify the validity and applicability of the present refined theory, some numerical results related to displacements, stresses and fundamental frequencies of simply supported laminated composite/sandwich plates and shells are presented and compared with those obtained by other shear deformation models considered in this paper. From the analysis, it can be concluded that the kinematics based on the undetermined integral component is very efficient, and its use leads to reach higher accuracy than conventional models in the study of laminated plates and shells.

      • KCI등재

        A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells

        Abdallah Zine,Abdelouahed Tounsi,Kada Draiche,Mohamed Sekkal,S. R. Mahmoud 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.26 No.2

        In this work, the bending and free vibration analysis of multilayered plates and shells is presented by utilizing a new higher order shear deformation theory (HSDT). The proposed involves only four unknowns, which is even less than the first shear deformation theory (FSDT) and without requiring the shear correction coefficient. Unlike the conventional HSDTs, the present one presents a novel displacement field which incorporates undetermined integral variables. The equations of motion are derived by using the Hamilton's principle. These equations are then solved via Navier-type, closed form solutions. Bending and vibration results are found for cylindrical and spherical shells and plates for simply supported boundary conditions. Bending and vibration problems are treated as individual cases. Panels are subjected to sinusoidal, distributed and point loads. Results are presented for thick to thin as well as shallow and deep shells. The computed results are compared with the exact 3D elasticity theory and with several other conventional HSDTs. The proposed HSDT is found to be precise compared to other several existing ones for investigating the static and dynamic response of isotropic and multilayered composite shell and plate structures.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼