RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        OZONE SENSING PROPERTIES OF THERMALLY EVAPORATED In2O3-BASED THIN FILMS

        K. ARSHAK,G. HICKEY,E. FORDE,J. HARRIS 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2008 NANO Vol.3 No.4

        Ozone sensing properties of mixed oxides of In2O3, ZnO, and SnO2 in the form of thin films are explored. Exposure to ozone causes defects in the materials, and subsequently causes changes in the materials properties. In this work, a cost-effective, room temperature, real-time ozone monitoring device has been developed. The fabricated sensors are capable of detecting threshold ozone safety levels proposed by the World Health Organization (WHO) while operating at room temperature. Room temperature operation offers many advantages over high temperature operation, such as reduced power consumption, reduced fabrication costs, and ease of implementation into portable devices, such as laptops and mobile phones. The fabrication of these sensors was carried out by means of an Edwards E306A Coating System. Various mixtures of In2O3, ZnO, and snO2 were deposited in a rectangular pattern on top of copperinterdigitated electrodes. X-ray Photo Spectroscopy (XPS) analysis showed that there were levels of impurities in the sensor samples, which were dependant on the fabrication process and parameters. XPS analysis also gave a detailed account of the shifts in binding energies of the thin oxide layers. The results presented show that the highest response to environmentally relevant ozone concentrations is achieved with a very thin sensing layer and a high deposition rate. The performance of the sensors has been investigated and compared.

      • KCI등재후보

        GAMMA RADIATION AND OZONE SENSING USING MIXED OXIDE THIN FILMS

        O. KOROSTYNSKA,K. ARSHAK,G. HICKEY 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2008 NANO Vol.3 No.4

        Gamma radiation and ozone sensing properties of mixed oxides in the form of thermally evaporated thin films are explored. External effects, such as radiation and ozone cause defects in the materials they interact with, cause changes in the material properties. An Edwards E306A thermal coating system was used for the mixed oxides thin films deposition. Cu electrodes were manufactured on the substrate via thermal evaporation, photoresist was spin-coated over it and was exposed to UV light via acetate containing the desired inter-digitated electrode patterns. After the exposure, the substrate was placed in a developer solution and then rinsed in water and placed in the etching solution to reveal the electrode pattern. The optical properties of the films were explored using CARY 1E UV-Visible Spectrophotometer. The influence of gamma radiation on the electrical properties of the films was traced via the measurements of conductance versus radiation dose, which were recorded in real-time using HP 4277A LCZ impedance analyzer at a frequency of 1 kHz. The fact that the explored thin films were sensitive to both gamma radiation and ozone exposure enables the development of cost-effective real-time monitoring system for personnel protection and environmental monitoring. This novel approach would allow the manufacture of the sensor system with multiple sensor heads during one technological process, whereas various shielding materials or pattern recognition could be employed to differentiate between the effects of ozone and gamma radiation on the mixed oxide thin film sensors.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼