RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Facile exfoliation and physicochemical characterization of biomass-based cellulose derived from Lantana aculeata leaves for sustainable environment

        S. Gokulkumar,Indran Suyambulingam,Divya Divakaran,G. Suganya Priyadharshini,M. Aravindh,Jenish Iyyadurai,M. Sanju Edwards,Suchart Siengchin 한국고분자학회 2023 Macromolecular Research Vol.31 No.12

        Researchers are focusing their efforts on developing high-performance bio-based composites due to increased interest in the production of natural fiber-based polymer composites utilizing novel cellulosic fillers. The primary goal of this study is to comprehend physicochemical and morphological characteristics, crystallinity, and thermal behavior of Lantana aculeata leaf cellulose (LALC) fillers. The extracted cellulose has some unique properties, such as excellent mechanical properties, lower density, bio-compatibility, heat resistance, and processability. Using X-ray diffraction, crystallinity index and size of Lantana aculeata leaf cellulose were calculated to be 73.7 and 7.42 nm, respectively. Furthermore, the morphology of the extracted LALC filler was examined using Scanning Electron Microscopy (SEM) and ImageJ software, and its average size was determined to be 69.21 nm. In addition, Fourier-transform infrared spectroscopy (FTIR) revealed that the extracted LALC contained no other non-cellulosic components due to alkali treatment, as they isolate cellulose and minimize the presence of non-cellulosic components. Furthermore, atomic force microscopy (AFM) revealed that the surface roughness of the cellulose is less than 4.630 nm, paving the way for an agricultural residue to be transformed into a desirable cellulosic filler material for developing polymeric composites. It can also withstand temperatures of maximum up to 247.23 °C, making it a viable substitute for more traditional sources. It can be used in a variety of polymer composite applications, including packaging materials, automotive parts, and building materials.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼