RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Influence of corrosive phenomena on bearing capacity of RC and PC beams

        Malerba, Pier Giorgio,Sgambi, Luca,Ielmini, Diego,Gotti, Giordano Techno-Press 2017 Advances in concrete construction Vol.5 No.2

        The attack of environmental aggressive agents progressively reduces the structural reliability of buildings and infrastructures and, in the worst exposition conditions, may even lead to their collapse in the long period. A change in the material and sectional characteristics of a structural element, due to the environmental damaging effects, changes its mechanical behaviour and varies both the internal stress redistribution and the kinematics through which it reaches its ultimate state. To identify such a behaviour, the evolution of both the damaging process and its mechanical consequences have to be taken into account. This paper presents a computational approach for the analysis of reinforced and prestressed concrete elements under sustained loading conditions and subjected to given damaging scenarios. The effects of the diffusion of aggressive agents, of the onset and development of the corrosion state in the reinforcement and the corresponding mechanical response are studied. As known, the corrosion on the reinforcing bars influences the damaging rate in the cracking pattern evolution; hence, the damage development and the mechanical behaviours are considered as coupled phenomena. The reliability of such an approach is validated in modelling the diffusion of the aggressive agents and the changes in the mechanical response of simple structural elements whose experimental behaviour is reported in Literature. A second set of analyses studies the effects of the corrosion of the tendons of a P.C. beam and explores potentially unexpected structural responses caused by corrosion under different aggressive exposition. The role of the different types and of the different positions of the damaging agents is discussed. In particular, it is shown how the collapse mode of the beam may switch from flexural to shear type, in case corrosion is caused by a localized chloride attack in the shear span.

      • Accelerated Retention Test Method by Controlling Ion Migration Barrier of Resistive Random Access Memory

        Yunmo Koo,Ambrogio, Stefano,Jiyong Woo,Jeonghwan Song,Ielmini, Daniele,Hyunsang Hwang IEEE 2015 IEEE electron device letters Vol.36 No.3

        <P>Retention of the low resistance state (LRS) in resistive random access memory (ReRAM) significantly decreases at increasing electrical stress due to barrier lowering of ion migration and Joule heating. The LRS failure rate under externally applied bias could be modeled by adopting an Arrhenius equation for ion migration. Accelerated retention failure under voltage stress is explained by the combination of two effects: 1) lowering of the ion migration barrier by external electric field and 2) thermal energy enhancement through local Joule heating. Based on this model, an improved methodology for ReRAM data retention test is proposed, allowing to reduce the testing temperature and the experimental time by several orders of magnitude by applying a relatively low voltage.</P>

      • Self-Aligned Nanotube–Nanowire Phase Change Memory

        Xiong, Feng,Bae, Myung-Ho,Dai, Yuan,Liao, Albert D.,Behnam, Ashkan,Carrion, Enrique A.,Hong, Sungduk,Ielmini, Daniele,Pop, Eric American Chemical Society 2013 Nano letters Vol.13 No.2

        <P>A central issue of nanoelectronics concerns their fundamental scaling limits, that is, the smallest and most energy-efficient devices that can function reliably. Unlike charge-based electronics that are prone to leakage at nanoscale dimensions, memory devices based on phase change materials (PCMs) are more scalable, storing digital information as the crystalline or amorphous state of a material. Here, we describe a novel approach to self-align PCM nanowires with individual carbon nanotube (CNT) electrodes for the first time. The highly scaled and spatially confined memory devices approach the ultimate scaling limits of PCM technology, achieving ultralow programming currents (∼0.1 μA set, ∼1.6 μA reset), outstanding on/off ratios (∼10<SUP>3</SUP>), and improved endurance and stability at few-nanometer bit dimensions. In addition, the powerful yet simple nanofabrication approach described here can enable confining and probing many other nanoscale and molecular devices self-aligned with CNT electrodes.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/nalefd/2013/nalefd.2013.13.issue-2/nl3038097/production/images/medium/nl-2012-038097_0005.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/nl3038097'>ACS Electronic Supporting Info</A></P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼