RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Reinforcement learning guided Spearman dynamic opposite Gradient-based optimizer for numerical optimization and anchor clustering

        Sun Kangjian,Huo Junhong,Jia Heming,Yue Lin 한국CDE학회 2024 Journal of computational design and engineering Vol.11 No.1

        As science and technology advance, the need for novel optimization techniques has led to an increase. The recently proposed metaheuristic algorithm, Gradient-based optimizer (GBO), is rooted in the gradient-based Newton's method. GBO has a more concrete theoretical foundation. However, gradient search rule (GSR) and local escaping operator (LEO) operators in GBO still have some shortcomings. The insufficient updating method and the simple selection process limit the search performance of the algorithm. In this paper, an improved version is proposed to compensate for the above shortcomings, called RL-SDOGBO. First, during the GSR phase, the Spearman rank correlation coefficient is used to determine weak solutions on which to perform dynamic opposite learning. This operation assists the algorithm to escape from local optima and enhance exploration capability. Secondly, to optimize the exploitation capability, reinforcement learning is used to guide the selection of solution update modes in the LEO operator. RL-SDOGBO is tested on 12 classical benchmark functions and 12 CEC2022 benchmark functions with seven representative metaheuristics, respectively. The impact of the improvements, the scalability and running time of the algorithm, and the balance of exploration and exploitation are analyzed and discussed. Combining the experimental results and some statistical results, RL-SDOGBO exhibits excellent numerical optimization performance and provides high-quality solutions in most cases. In addition, RL-SDOGBO is also used to solve the anchor clustering problem for small target detection, making it a more potential and competitive option.

      • KCI등재후보

        Rutin alleviated lipopolysaccharide-induced damage in goat rumen epithelial cells

        Zhan Jinshun,Gu Zhiyong,Wang Haibo,Liu Yuhang,Wu Yanping,Huo Junhong 아세아·태평양축산학회 2024 Animal Bioscience Vol.37 No.2

        Objective: Rutin, also called vitamin P, is a flavonoids from plants. Previous studies have indicated that rutin can alleviate the injury of tissues and cells by inhibiting oxidative stress and ameliorating inflammation. There is no report on the protective effects of rutin on goat rumen epithelial cells (GRECs) at present. Hence, we investigated whether rutin can alleviate lipopolysaccharide (LPS)-induced damage in GRECs. Methods: GRECs were cultured in basal medium or basal medium containing 1 μg/mL LPS, or 1 μg/mL LPS and 20 μg/mL rutin. Six replicates were performed for each group. After 3-h culture, the GRECs were harvested to detect the relevant parameters. Results: Rutin significantly enhanced the cell activity (p<0.05) and transepithelial electrical resistance (TEER) (p<0.01) and significantly reduced the apoptosis rate (p<0.05) of LPSinduced GRECs. Rutin significantly increased superoxide dismutase, glutathione peroxidase, and catalase activity (p<0.01) and significantly decreased lactate dehydrogenase activity and reactive oxygen species and malondialdehyde (MDA) levels in LPS-induced GRECs (p<0.01). The mRNA and protein levels of interleukin 6 (IL-6), IL-1β, and C-X-C motif chemokine ligand 8 (CXCL8) and the mRNA level of tumor necrosis factor-α (TNF-α) and chemokine C-C motif ligand 5 (CCL5) were significantly increased in LPS-induced GRECs (p<0.05 or p<0.01), while rutin supplementation significantly decreased the mRNA and protein levels of IL-6, TNF-α, and CXCL8 in LPS-induced GRECs (p<0.05 or p<0.01). The mRNA level of toll-like receptor 2 (TLR2), and the mRNA and protein levels of TLR4 and nuclear factor κB (NF-κB) was significantly improved in LPS-induced GRECs (p<0.05 or p<0.01), whereas rutin supplementation could significantly reduce the mRNA and protein levels of TLR4 (p<0.05 or p<0.01). In addition, rutin had a tendency of decreasing the protein levels of CXCL6, NF-κB, and inhibitor of nuclear factor kappa-B alpha (0.05< p<0.10). Rutin could significantly decreased interferon regulatory factor 3 mRNA expression in LPS-induced GRECs (p<0.05), whereas interferon induced protein with tetratricopeptide repeats 3 (IFIT3) and toll-interacting protein (TOLLIP) mRNA expression was not significantly different between the groups. LPS reduced the tight junction protein zonula occludin 1 (ZO-1) level in GRECs whereas rutin enhanced it. Rutin significantly improved tight junction protein Claudin-1 mRNA expression in LPS-induced GRECs (p<0.01), but could not affect tight junction protein Occludin mRNA expression. Conclusion: Rutin alleviated LPS-induced barrier damage in GRECs by improving oxidation resistance and anti-inflammatory activity, which may be related to TLR/NF-κB signaling pathway inhibition.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼