RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Comparison of different fluid dynamics in activated sludge system for the treatment of a stimulated milk processing wastewater: Process analysis and optimization

        Ali Akbar Zinatizadeh Lorestani,Hojjatollah Bashiri,Azar Asadi,Hossein Bonakdari 한국화학공학회 2012 Korean Journal of Chemical Engineering Vol.29 No.10

        Wastewater from the milk industry usually undergoes activated sludge ahead of refining treatments, final discharge or reuse. To identify the most effective bioreactor hydraulic regime for the secondary treatment of wastewater resulting from the milk industry in an activated sludge system, two lab-scale activated sludge systems characterized by a different configuration and fluid dynamics (i.e., a compartmentalized activated sludge (CAS) with plug flow regime and a complete mixed activated sludge (AS)) were operated in parallel, inoculated with the same microbial consortium and fed with identical streams of a stimulated dairy wastewater. The effect of three process and operational variables--influent chemical oxygen demand (COD) concentration, sludge recycle ratio (R) and hydraulic retention time (HRT)--on the performance of the two systems were investigated. Experiments were conducted based on a central composite face-centered design (CCFD) and analyzed using response surface methodology (RSM). The region of exploration for treatment of the synthetic wastewater was taken as the area enclosed by the CODin (200, 1,000 mg/l), R (1, 5), and HRT (2, 5 h) boundaries. To evaluate the process, three parameters, COD removal efficiency (E), specific substrate utilization rate (U), and sludge volume index (SVI), were measured and calculated over the course of the experiments as the process responses. The change of the flow regime from complete-mix to plug flow resulted in considerable improvements in the COD removal efficiency of milk wastewater and sludge settling properties. SVI levels for CAS system (30-58 ml/g) were considerably smaller that for the AS system (50-145 ml/g). In addition, the biomass production yield could be reduced by about 10% compared to the AS system. The results indicated that for the wastewater, the design HRT of a CAS reactor could be shortened to 2-4 h.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼