RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        In vitro assay for osteoinductive activity of different demineralized freeze-dried bone allograft

        Vaziri, Shahram,Vahabi, Surena,Torshabi, Maryam,Hematzadeh, Somayeh Korean Academy of Periodontology 2012 Journal of Periodontal & Implant Science Vol.42 No.6

        Purpose: Various bone graft materials have been used for periodontal tissue regeneration. Demineralized freeze-dried bone allograft (DFDBA) is a widely used bone substitute. The current widespread use of DFDBA is based on its potential osteoinductive ability. Due to the lack of verifiable data, the purpose of this study was to assess the osteoinductive activity of different DFDBAs in vitro. Methods: Sarcoma osteogenic (SaOS-2) cells (human osteoblast-like cells) were exposed to 8 mg/mL and 16 mg/mL concentrations of three commercial types of DFDBA: Osseo+, AlloOss, and Cenobone. The effect of these materials on cell proliferation was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. The osteoinductive ability was evaluated using alizarin red staining, and the results were confirmed by evaluating osteogenic gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results: In the SaOS-2 cells, an 8 mg/mL concentration of Osseo+ and Cenobone significantly increased cell proliferation in 48 hours after exposure (P<0.001); however, in these two bone materials, the proliferation of cells was significantly decreased after 48 hours of exposure with a 16 mg/mL concentration (P<0.001). The alizarin red staining results demonstrated that the 16 mg/mL concentration of all three tested DFDBA induced complete morphologic differentiation and mineralized nodule production of the SaOS-2 cells. The RT-PCR results revealed osteopontin gene expression at a 16 mg/mL concentration of all three test groups, but not at an 8 mg/mL concentration. Conclusions: These commercial types of DFDBA are capable of decreasing proliferation and increasing osteogenic differentiation of the SaOS-2 cell line and have osteoinductive activity in vitro.

      • KCI등재

        In vitro assay for osteoinductive activity of different demineralized freeze-dried bone allograft

        Shahram Vaziri,Surena Vahabi,Maryam Torshabi,Somayeh Hematzadeh 대한치주과학회 2012 Journal of Periodontal & Implant Science Vol.42 No.6

        Purpose: Various bone graft materials have been used for periodontal tissue regeneration. Demineralized freeze-dried bone allograft (DFDBA) is a widely used bone substitute. The current widespread use of DFDBA is based on its potential osteoinductive ability. Due to the lack of verifiable data, the purpose of this study was to assess the osteoinductive activity of different DFDBAs in vitro. Methods: Sarcoma osteogenic (SaOS-2) cells (human osteoblast-like cells) were exposed to 8 mg/mL and 16 mg/mL concentrations of three commercial types of DFDBA: Osseo+, AlloOss, and Cenobone. The effect of these materials on cell proliferation was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. The osteoinductive ability was evaluated using alizarin red staining, and the results were confirmed by evaluating osteogenic gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results: In the SaOS-2 cells, an 8 mg/mL concentration of Osseo+ and Cenobone significantly increased cell proliferation in 48 hours after exposure (P<0.001); however, in these two bone materials, the proliferation of cells was significantly decreased after 48 hours of exposure with a 16 mg/mL concentration (P<0.001). The alizarin red staining results demonstrated that the 16 mg/mL concentration of all three tested DFDBA induced complete morphologic differentiation and mineralized nodule production of the SaOS-2 cells. The RT-PCR results revealed osteopontin gene expression at a 16 mg/mL concentration of all three test groups, but not at an 8 mg/mL concentration. Conclusions: These commercial types of DFDBA are capable of decreasing proliferation and increasing osteogenic differentiation of the SaOS-2 cell line and have osteoinductive activity in vitro.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼