RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Intercalated cell-specific Rh B glycoprotein deletion diminishes renal ammonia excretion response to hypokalemia.

        Bishop, Jesse M,Lee, Hyun-Wook,Handlogten, Mary E,Han, Ki-Hwan,Verlander, Jill W,Weiner, I David American Physiological Society 2013 American journal of physiology. Renal physiology Vol.304 No.4

        <P>The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K(+)-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.</P>

      • Expression of the ammonia transporter family member, Rh B Glycoprotein, in the human kidney

        Han, Ki-Hwan,Lee, Hyun-Wook,Handlogten, Mary E.,Whitehill, Florence,Osis, Gunars,Croker, Byron P.,Clapp, William L.,Verlander, Jill W.,Weiner, I. David American Physiological Society 2013 American journal of physiology. Renal physiology Vol.304 No.7

        <P>The ammonia transporter family member, Rh B Glycoprotein (RhBG/Rhbg), is essential for ammonia transport by the rodent kidney, but in the human kidney mRNA but not protein expression has been reported. Because ammonia transport is fundamental for acid-base homeostasis, the current study addressed RhBG expression in the human kidney. Two distinct RhBG mRNA sequences have been reported, with different numbers of consecutive cytosines at nt1265 and thus encoding different carboxy-tails. Sequencing the region of difference in both human kidney and liver mRNA showed eight sequential cytosines, not seven as in some reports. Knowing the correct mRNA sequence for RhBG, we then assessed RhBG protein expression using antibodies against the correct amino acid sequence. Immunoblot analysis demonstrated RhBG protein expression in human kidney and immunohistochemistry identified basolateral RhBG in connecting segment (CNT) and the cortical and outer medullary collecting ducts. Colocalization of RhBG with multiple cell-specific markers demonstrated that that CNT cells and collecting duct type A intercalated cells express high levels of RhBG, and type B intercalated cells and principal cells do not express detectable RhBG. Thus, these studies identify the correct mRNA and thus protein sequence for human RhBG and show that the human kidney expresses basolateral RhBG protein in CNT, type A intercalated cells, and non-A, non-B cells. We conclude that RhBG can mediate an important role in human renal ammonia transport.</P>

      • Expression of the rhesus glycoproteins, ammonia transporter family members, RHCG and RHBG in male reproductive organs

        Lee, Hyun-Wook,Verlander, Jill W,Handlogten, Mary E,Han, Ki-Hwan,Cooke, Paul S,Weiner, I David BioScientifica Ltd 2013 Reproduction Vol.146 No.3

        <P>The rhesus glycoproteins, Rh B glycoprotein (RHBG) and Rh C glycoprotein (RHCG), are recently identified ammonia transporters. Rhcg expression is necessary for normal male fertility, but its specific cellular expression is unknown, and Rhbg has not been reported to be expressed in the male reproductive tract. This study sought to determine the specific cellular expression of Rhcg, to determine whether Rhbg is expressed in the male reproductive tract, and, if so, to determine which cells express Rhbg using real-time RT-PCR, immunoblot analysis, and immunohistochemistry. Both Rhbg and Rhcg were expressed throughout the male reproductive tract. In the testis, high levels of Rhbg were expressed in Leydig cells, and Rhcg was expressed in spermatids during the later stages of their maturation (steps 13–16) in stages I–VIII of the seminiferous epithelium cycle. In the epididymis, basolateral Rhbg was present in narrow cells in the initial segment, in principal cells in the upper corpus, and in clear cells throughout the epididymis. Apical Rhcg immunolabel was present in principal cells in the caput and upper corpus epididymidis and in clear cells in the middle and lower corpus and cauda epididymidis. In the vas deferens, apical Rhcg immunolabel and basolateral Rhbg immunolabel were present in some principal cells and colocalized with H<SUP>+</SUP>-ATPase immunolabel. We conclude that both Rhbg and Rhcg are highly expressed in specific cells in the male reproductive tract where they can contribute to multiple components of male fertility.</P>

      • SCIE

        Renal ammonia excretion in response to hypokalemia: effect of collecting duct-specific Rh C glycoprotein deletion.

        Lee, Hyun-Wook,Verlander, Jill W,Bishop, Jesse M,Handlogten, Mary E,Han, Ki-Hwan,Weiner, I David American Physiological Society 2013 American Journal of Physiology Vol.304 No.4

        <P>The Rhesus factor protein, Rh C glycoprotein (Rhcg), is an ammonia transporter whose expression in the collecting duct is necessary for normal ammonia excretion both in basal conditions and in response to metabolic acidosis. Hypokalemia is a common clinical condition associated with increased renal ammonia excretion. In contrast to basal conditions and metabolic acidosis, increased ammonia excretion during hypokalemia can lead to an acid-base disorder, metabolic alkalosis, rather than maintenance of acid-base homeostasis. The purpose of the current studies was to determine Rhcg's role in hypokalemia-stimulated renal ammonia excretion through the use of mice with collecting duct-specific Rhcg deletion (CD-Rhcg-KO). In mice with intact Rhcg expression, a K(+)-free diet increased urinary ammonia excretion and urine alkalinization and concurrently increased Rhcg expression in the collecting duct in the outer medulla. Immunohistochemistry and immunogold electron microscopy showed hypokalemia increased both apical and basolateral Rhcg expression. In CD-Rhcg-KO, a K(+)-free diet increased urinary ammonia excretion and caused urine alkalinization, and the magnitude of these changes did not differ from mice with intact Rhcg expression. In mice on a K(+)-free diet, CD-Rhcg-KO increased phosphate-dependent glutaminase (PDG) expression in the outer medulla. We conclude that hypokalemia increases collecting duct Rhcg expression, that this likely contributes to the hypokalemia-stimulated increase in urinary ammonia excretion, and that adaptive increases in PDG expression can compensate for the absence of collecting duct Rhcg.</P>

      • SCIE

        Effect of reduced renal mass on renal ammonia transporter family, Rh C glycoprotein and Rh B glycoprotein, expression.

        Kim, Hye-Young,Baylis, Chris,Verlander, Jill W,Han, Ki-Hwan,Reungjui, Sirirat,Handlogten, Mary E,Weiner, I David American Physiological Society 2007 American Journal of Physiology Vol.293 No.4

        <P>Kidneys can maintain acid-base homeostasis, despite reduced renal mass, through adaptive changes in net acid excretion, of which ammonia excretion is the predominant component. The present study examines whether these adaptations are associated with changes in the ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg). We used normal Sprague-Dawley rats and a 5/6 ablation-infarction model of reduced renal mass; control rats underwent sham operation. After 1 wk, glomerular filtration rate, assessed as creatinine clearance, was decreased, serum bicarbonate was slightly increased, and Na(+) and K(+) were unchanged. Total urinary ammonia excretion was unchanged, but urinary ammonia adjusted for creatinine clearance, an index of per nephron ammonia metabolism, increased significantly. Although reduced renal mass did not alter total Rhcg protein expression, both light microscopy and immunohistochemistry with quantitative morphometric analysis demonstrated hypertrophy of both intercalated cells and principal cells in the cortical and outer medullary collecting duct that was associated with increased apical and basolateral Rhcg polarization. Rhbg expression, analyzed using immunoblot analysis, immunohistochemistry, and measurement of cell-specific expression, was unchanged. We conclude that altered subcellular localization of Rhcg contributes to adaptive changes in single-nephron ammonia metabolism and maintenance of acid-base homeostasis in response to reduced renal mass.</P>

      • Expression of the Ammonia Transporter, Rh C Glycoprotein, in Normal and Neoplastic Human Kidney

        Han, Ki-Hwan,Croker, Byron P.,Clapp, William L.,Werner, Dietrich,Sahni, Manisha,Kim, Jin,Kim, Hye-Young,Handlogten, Mary E.,Weiner, I. David American Society of Nephrology 2006 Journal of the American Society of Nephrology Vol.17 No.10

        <P>Recent studies have identified the presence of a novel Mep/Amt/Rh glycoprotein family of proteins that may play an important role in transmembrane ammonia transport. One of the mammalian members of this family, Rh C glycoprotein (RhCG), transports ammonia, is expressed in distal nephron sites that are critically important for ammonia secretion, exhibits increased expression in response to chronic metabolic acidosis, and originally was cloned as a tumor-related protein. The purpose of our studies was to determine the localization of RhCG in the normal and neoplastic human kidney. Immunoblot analysis of human renal cortical protein lysates demonstrated RhCG protein expression with a molecular weight of approximately 52 kD. Immunohistochemistry revealed both apical and basolateral Rhcg expression in the distal convoluted tubule, connecting segment, and initial collecting tubule and throughout the collecting duct. Co-localization with calbindin-D28k, H(+)-ATPase, aquaporin-2, and pendrin showed that distal convoluted tubule and connecting segment cells, A-type intercalated cells, and non-A, non-B cells express RhCG and that B-type intercalated cells, principal cells, and inner medullary collecting duct cells do not. In renal neoplasms, RhCG was expressed by chromophobe renal cell carcinoma and renal oncocytoma but not by clear cell renal cell carcinoma or by papillary renal cell carcinomas. These studies suggest that RhCG contributes to both apical and basolateral membrane ammonia transport in the human kidney. Furthermore, renal chromophobe renal cell carcinoma and renal oncocytoma seem to originate from the A-type intercalated cell.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼