RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Molecularly Imprinted Polymer Coating with Fluorescence on Magnetic Particle

        Jing Huang,Haiqing Liu,Haifen Men,Yunyun Zhai,Qihui Xi,Zulei Zhang,Jian Zhang,Zhengzhi Yin,Lei Li 한국고분자학회 2013 Macromolecular Research Vol.21 No.9

        In this research, molecular imprinting technology was employed to prepare magnetic, fluorescent molecularly imprinted polymer microspheres (fluorescent M-MIP) for recognition and separation of endocrine disrupting chemicals. The fluorescent M-MIP were prepared using Fe3O4@SiO2 magnetic nanoparticles combined with fluorescein (isothiocyanate) as fluorescent material with the surface molecularly imprinting method. The magnetic fluorescent molecularly imprinted polymers were characterized by fluorescence spectrophotometer, X-ray powder diffraction,vibration sample magnetic field meter, scanning and transmission electron microscopic methods. The results showed that the fluorescent M-MIP not only had excellent superparamagnetism and maintained the crystalline structure of the magnetic nanoparticles, but also stable fluorescence. The recognition selectivity of the magnetic fluorescence polymer was studied for template molecule and analogues. The results indicated that the fluorescent quenches of bisphenol A (the selective target) for fluorescent M-MIP were higher than that of the structural analogues, which illustrated the recognition selectivity for bisphenol A. Simultaneously, the fluorescent magnetic non-imprinted polymers (M-NIPs) had much higher fluorescent quenches than the fluorescent M-NIPs in the processes of rebinding. Therefore, the fluorescent M-MIP technology can be used for the recognition, magnetic separation and detection of bisphenol A by fluorescence spectrometry without any time-consuming elution.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼