RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Absorption characteristics of nanoparticles with sharp edges for a direct-absorption solar collector

        Qin, Caiyan,Kim, Joong Bae,Gonome, Hiroki,Lee, Bong Jae Elsevier 2020 RENEWABLE ENERGY Vol.145 No.-

        <P><B>Abstract</B></P> <P>Plasmonic nanofluids has been reported beneficial for enhancing absorption of the solar energy in a direct-absorption solar collector (DASC). In order to overcome the shortage of narrow absorption band associated with the localized surface plasmon, two strategies can be adopted. One is to blend nanoparticles with different absorption peaks, and the other is to develop nanoparticles capable of exhibiting multiple absorption peaks at different wavelengths. In this study, the latter strategy is explored systematically by investigating the absorption efficiency of metallic nanoparticles with sharp edges. The results show that the Ag nanoparticles with sharp edges can induce multiple absorption peaks due to both localized surface plasmon resonance and lightning rod effect. We also show that the sharper edges (i.e., with either smaller radius of curvature or smaller edge angle) can greatly enhance the lightning rod effect. In addition, the study of SiO<SUB>2</SUB>-core/Ag-shell suggests that the core/shell configuration is beneficial for further broadening the absorption band compared to the Ag nanoparticle. Further investigation shows that the solar-weighted absorption coefficient of a DASC using the four-edge nanoparticle is 35% and 20% point higher than the nanosphere and the nanorod respectively with a fixed volume fraction of <SUP> 10 − 6 </SUP> .</P> <P><B>Highlights</B></P> <P> <UL> <LI> Ag nanoparticles with sharp edges can generate multiple absorption peaks. </LI> <LI> Multiple peaks are due to the localized surface plasmon and the lightning rod effect. </LI> <LI> More edges do not necessarily result in broader absorption. </LI> <LI> Core/shell nanoparticles exhibit broader absorption band than the Ag nanoparticles. </LI> <LI> Performance of a DASC with edged particles is much higher than smooth particles. </LI> </UL> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼