RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Uncovering Technological and Environmental Potentials of Aluminum Alloy Scraps Recycling Through Friction Stir Consolidation

        Gianluca Buffa,Dario Baffari,Giuseppe Ingarao,Livan Fratini 한국정밀공학회 2020 International Journal of Precision Engineering and Vol.7 No.5

        Conventional metal chips recycling processes are energy-intensive with low efficiency and permanent material losses during re-melting. Solid state recycling allows direct recycling of metal scraps into semi-finished products. It is expected that this process category would lower the environmental performance of metals recycling. Friction Stir Consolidation is a new solidstate technique taking advantage of friction heat generation and severe plastic deformation to consolidate chips into billets. In this research, the feasibility of Friction Stir Consolidation as aluminum chips recycling process is analyzed. Specifically, an experimental campaign has been carried out with varying main process parameters. Three main aspects have been evaluated in order to highlight products quality and environmental impact of the process: (i) metallurgical and mechanical properties of the consolidated products; (ii) primary energy demand, as compared to conventional processes; (iii) forgeability of the consolidated products, as compared to parent material. Results revealed that a proper process parameters selection results in fully consolidated aluminum disk with satisfactory mechanical properties. Also, the new recycling strategy allows substantial energy savings with respect the conventional (remelting based) route.

      • KCI등재

        Integrated WAAM-Subtractive versus Pure Subtractive Manufacturing Approaches: an Energy Efficiency Comparison

        Gianni Campatelli,Filippo Montevecchi,Giuseppe Venturini,Giuseppe Ingarao,Paolo C. Priarone 한국정밀공학회 2020 International Journal of Precision Engineering and Vol.7 No.1

        Over the last years, additive manufacturing (AM) has been gathering momentum both in the academic and in the industrial world. Besides the obvious benefits in terms of flexibility and process capabilities, the environmental performance of such processes has still to be properly analyzed. Actually, the advantages of additive manufacturing over conventional processes are not obvious. Indeed, different manufacturing approaches result in different amounts of involved material and in different processing energy demands. Environmental comparative analyses are hence crucial to properly characterize AM processes. In this paper, an energetic comparison between the emerging wire arc additive manufacturing (WAAM) process and a traditional machining-from-bulk solution to produce a steel blade is presented. A methodology accounting for all the material and energy flows of the whole component life cycle is proposed. Experimental measurements and environmental databases are used to quantify the primary energy demand at each stage of the life cycle. The results reveal that, for the analyzed case study, an integrated additive (WAAM)-subtractive manufacturing route enables significant material and primary energy savings with respect to traditionally applied approaches.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼