RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Development of a model for dimethyl ether non-adiabatic reactors to improve methanol conversion

        Gholamreza Bakeri,Fatemeh Nasrollahi,Ahmad Fauzi Ismail,Mostafa Rahimnejad,Mahdi Imanian 한국화학공학회 2013 Korean Journal of Chemical Engineering Vol.30 No.10

        The modeling of adiabatic and non-adiabatic reactors, using three cooling mediums in the shell side of a shell and tube reactor in cocurrent and countercurrent flow regimes has been conducted. The cooling mediums used in this research are saturated water and methanol feed gas to a reactor which is preheated in the shell side and a special type of oil. The results of adiabatic reactor modeling show good compatibility with the data received from a commercial plant. The results of non-adiabatic reactor modeling showed that more methanol conversion can be achieved in a lower length of reactor, even though in some cases the maximum temperature in the tube side of the reactor is more than the deactivation temperature of the catalyst.

      • KCI등재

        Porous polyethersulfone hollow fiber membrane in CO2 separation process via membrane contactor - The effect of nonsolvent additives

        Gholamreza Bakeri,Masoud Rezaei-DashtArzhandi,Ahmad Fauzi Ismail,Takeshi Matsuura,Mohd Sohaimi Abdullah,Ng Be Cheer 한국화학공학회 2017 Korean Journal of Chemical Engineering Vol.34 No.1

        A membrane contactor (MC) is used for natural gas sweetening and wastewater treatment with a membrane that is acting as a separating barrier between two phases, usually liquid and gas. The performance of membrane is governed by parameters such as pore size, porosity, tortuosity and surface hydrophobicity, which can be controlled by a number of methods. Addition of nonsolvents to spinning solution is known to be one of such methods. In this study, the effects of low molecular weight additives as phase inversion promoters on the morphology of polyethersulfone hollow fiber membranes and their performance in gas-liquid MC processes were investigated. It was found that among the six nonsolvent additives under study, addition of water resulted in the highest CO2 flux, by decreasing the thermodynamic stability of polymer solution and maintaining high solvent-nonsolvent exchange rate.

      • KCI등재

        Performance of TFN nanofiltration membranes through embedding internally modified titanate nanotubes

        Zeynab Fallahnejad,Gholamreza Bakeri,Ahmad Fauzi Ismail 한국화학공학회 2022 Korean Journal of Chemical Engineering Vol.39 No.7

        High toxicity of water resources by heavy metal ions is common and membrane filtration is one the solutions to this problem. Titanate nanotubes (TNT) are generally used due to their unique characteristics such as mesoporous structure, and high specific surface area. In this study, the internal surface of TNT was coated through a novel in-situ polymerization method with various polymers to alter the property and size of inner surface of the nanotubes, and then was embedded in the polyamide layer of the nanofiltration membrane. The modified nanotubes were supposed to act as the channels for water transport and reject the multivalent/monovalent ions; this phenomenon was more pronounced in the modified nanotubes because of the reduction in inner diameter. Fourier transform infrared spectroscopy, X-ray diffraction and Brunauer-Emmett-Teller analysis were used to characterize the unmodified/modified nanotubes. Furthermore, the membranes were synthesized by in-situ interfacial polymerization of trimesoyl chloride and m-phenylenediamine containing 0.05 wt% nanotubes; the performance of the fabricated membranes in terms of pure water flux (PWF), contact angle, feed flux and Na+ and Cu2+ rejections was studied. Generally, incorporation of the modified nanotubes improved the trade-off between the permeation and rejection. Among the fabricated membranes, the maximum PWF was 26.13 L m2 h1 for the membrane containing 0.05 wt% polystyrene modified TNT, 71.23% more than neat thin film membrane and without any significant change in the rejection; that can be related to the hydrophilicity of the nanotube and the formation of small cavities on the membrane surface.

      • KCI등재

        A comparative study on the performance of highly conductive sulfonated poly(ether ether ketone) PEM modified by halloysite nanotubes, sulfonated polystyrene and phosphotungstic acid

        Seyed Hesam-Aldin Samaei,Gholamreza Bakeri,Mohammad Soleimani Lashkenari 한국화학공학회 2022 Korean Journal of Chemical Engineering Vol.39 No.2

        Proton transfer is the most important task of proton exchange membranes (PEMs) for application in fuel cells. One vital disadvantage of currently used commercial Nafion membranes is the low proton conductivity at high temperatures. Therefore, the objective of this research was to increase the proton conductivity of PEMs based on sulfonated poly (ether ether ketone) (SPEEK). Herein, modification of SPEEK-based PEM was carried out using polydopamine- coated halloysite nanotubes (HNT) alone and in combination with sulfonated polystyrene (SPS) and phosphotungstic acid (PWA). In this method, poly (ether ether ketone) sulfonation process was performed under optimum operating conditions to create more sulfonic acid groups on its chains. Here, polydopamine was doped on the outer surface of HNT (DHNT) and employed as the additive to create additional proton transferring pathways in the membrane. The hydrophilicity of the modified nanotube was enhanced through silanization (named as DHNTS). Moreover, SPS and PWA were applied to improve the ability of protons to transfer through the proton barrier channels in the membrane. Performing the sulfonation of polystyrene in the solution phase was a novel approach in this study, which led to significant increase in the degree of sulfonation. The results showed that the SPEEK/DHNTS|SPS and SPEEK/DHNTS|PWA membranes in the presence of 15% weight ratio additives and 100% relative humidity exhibited 109% and 90% higher proton conductivity than the neat SPEEK membrane, respectively. Furthermore, 20% and 10% higher proton conductivity was observed for the aforementioned membranes compared to the commercial Nafion117 membrane. Because of the strong acid-base bonding between DHNTS and SPEEK and the sticky nature of polydopamine, the chemical stability of the modified PEMs was higher than the neat membrane. In terms of fuel cell performance, there was little difference between Nafion117 membrane and DHNTS-modified PEM. These modified membranes are therefore suitable alternatives to address the commercial Nafion membrane’s gap in the fuel cells.

      • KCI등재

        Thionine Increases Electricity Generation from Microbial Fuel Cell Using Saccharomyces cerevisiae and Exoelectrogenic Mixed Culture

        Mostafa Rahimnejad,Ghasem Darzi Najafpour,Ali Asghar Ghoreyshi,Farid Talebnia,Giuliano C. Premier,Gholamreza Bakeri,김중래,오상은 한국미생물학회 2012 The journal of microbiology Vol.50 No.4

        Microbial fuel cells (MFCs) have been shown to be capable of clean energy production through the oxidation of biodegradable organic waste using various bacterial species as biocatalysts. In this study we found Saccharomyces cerevisiae,previously known electrochemcially inactive or less active species, can be acclimated with an electron mediator thionine for electrogenic biofilm formation in MFC, and electricity production is improved with facilitation of electron transfer. Power generation of MFC was also significantly increased by thionine with both aerated and non-aerated cathode. With electrochemically active biofilm enriched with swine wastewater, MFC power increased more significantly by addition of thionine. The optimum mediator concentration was 500 mM of thionine with S. cerevisae in MFC with the maximum voltage and current generation in the microbial fuel cell were 420 mV and 700 mA/m2, respectively. Cyclic voltametry shows that thionine improves oxidizing and reducing capability in both pure culture and acclimated biofilm as compared to non-mediated cell. The results obtained indicated that thionine has great potential to enhance power generation from unmediated yeast or electrochemically active biofilm in MFC.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼