RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Structural response of composite concrete filled plastic tubes in compression

        Walter O. Oyawa,Naftary K. Gathimba,Geoffrey N. Mang’uriu 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.21 No.3

        Kenya has recently experienced worrying collapse of buildings during construction largely attributable to the poor quality of in-situ concrete and poor workmanship. The situation in the country is further compounded by rapid deterioration of infrastructure, hence necessitating the development of alternative structural systems such as concrete filled unplasticized poly vinyl chloride (UPVC) tubes as columns. The work herein adds on to the very limited and scanty work on use of UPVC tubes in construction. This study presents the findings of experimental and analytical work which investigated the structural response of composite concrete filled UPVC tubes under compressive load regime. UPVC pipes are cheaper than steel tubes and can be used as formwork during construction and thereafter as an integral part of column. Key variables in this study included the strength of infill concrete, the length to diameter ratio (L/D) of the plastic tube, as well as the diameter to thickness ratio (D/2t) of the plastic tube. Plastic tubes having varying diameters and heights were used to confine concrete of different strengths. Results obtained in the study clearly demonstrate the effectiveness of UPVC tubes as a confining medium for infill concrete, attributable to enhanced composite interaction between the UPVC tube and infill concrete medium. It was determined that compressive strength of the composite column specimens increased with increased concrete strength while the same decreased with increased column height, albeit by a small margin since all the columns considered were short columns. Most importantly, the experimental confined concrete strength increased significantly when compared to unconfined concrete strength; the strength increased between 1.18 to 3.65 times the unconfined strength. It was noted that lower strength infill concrete had the highest confined strength possibly due to enhanced composite interaction with the confining UPVC tube. The study further proposes an analytical model for the determination of confined strength of concrete.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼