RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Monitoring a steel building using GPS sensors

        Casciati, Fabio,Fuggini, Clemente Techno-Press 2011 Smart Structures and Systems, An International Jou Vol.7 No.5

        To assess the performance of a structure requires the measurement of global and relative displacements at critical points across the structure. They should be obtained in real time and in all weather condition. A Global Navigation Satellite System (GNSS) could satisfy the last two requirements. The American Global Position System (GPS) provides long term acquisitions with sampling rates sufficient to track the displacement of long period structures. The accuracy is of the order of sub-centimetres. The steel building which hosts the authors' laboratory is the reference case-study within this paper. First a comparison of data collected by GPS sensor units with data recorded by tri-axial accelerometers is carried out when dynamic vibrations are induced in the structure by movements of the internal bridge-crane. The elaborations from the GPS position readings are then compared with the results obtained by a Finite Element (FE) numerical simulation. The purposes are: i) to realize a refinement of the structural parameters which characterize the building and ii) to outline a suitable way for processing GPS data toward structural monitoring.

      • KCI등재

        Combining GPS and accelerometers’ records to capture torsional response of cylindrical tower

        Raed J. AlSaleh,Clemente Fuggini 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.25 No.1

        Researchers up to date have introduced several Structural Health Monitoring (SHM) techniques with varying advantages and drawbacks for each. Satellite positioning systems (GPS, GLONASS and GALILEO) based techniques proved to be promising, especially for high natural period structures. Particularly, the GPS has proved sufficient performance and reasonable accuracy in tracking real time dynamic displacements of flexible structures independent of atmospheric conditions, temperature variations and visibility of the monitored object. Tall structures are particularly sensitive to oscillations produced by different sources of dynamic actions; such as typhoons. Wind forces induce in the structure both longitudinal and perpendicular displacements with respect to the wind direction, resulting in torsional effects, which are usually more complex to be detected. To efficiently track the horizontal rotations of the in-plane sections of such flexible structures, two main issues have to be considered: a suitable sensor topology (i.e., location, installation, and combination of sensors), and the methodology used to process the data recorded by sensors. This paper reports the contributions of the measurements recorded from dual frequency GPS receivers and uni-axial accelerometers in a full-scale experimental campaign. The Canton tower in Guangzhou-China is the case study of this research, which is instrumented with a long-term structural health monitoring system deploying both accelerometers and GPS receivers. The elaboration of combining the obtained rather long records provided by these two types of sensors in detecting the torsional behavior of the tower under ambient vibration condition and during strong wind events is discussed in this paper. Results confirmed the reliability of GPS receivers in obtaining the dynamic characteristics of the system, and its ability to capture the torsional response of the tower when used alone or when they are combined with accelerometers integrated data.

      • SCIESCOPUS

        System identification of a super high-rise building via a stochastic subspace approach

        Faravelli, Lucia,Ubertini, Filippo,Fuggini, Clemente Techno-Press 2011 Smart Structures and Systems, An International Jou Vol.7 No.2

        System identification is a fundamental step towards the application of structural health monitoring and damage detection techniques. On this respect, the development of evolved identification strategies is a priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be adopted as references for future structural health assessments. The paper presents the identification of the modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which proved to be successful in previous literature studies. This well-known approach is based on a clustering technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem, which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These records are then subdivided into a convenient number of data sets and the variability of modal parameter estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long records are considered for this purpose. A comparison with finite element model predictions is finally carried out, using the structural matrices provided within the benchmark, in order to check that all the structural modes contained in the considered frequency interval are effectively identified via SSI-data.

      • KCI등재후보

        Monitoring a steel building using GPS sensors

        Fabio Casciati,Clemente Fuggini 국제구조공학회 2011 Smart Structures and Systems, An International Jou Vol.7 No.5

        To assess the performance of a structure requires the measurement of global and relative displacements at critical points across the structure. They should be obtained in real time and in all weather condition. A Global Navigation Satellite System (GNSS) could satisfy the last two requirements. The American Global Position System (GPS) provides long term acquisitions with sampling rates sufficient to track the displacement of long period structures. The accuracy is of the order of sub-centimetres. The steel building which hosts the authors’ laboratory is the reference case-study within this paper. First a comparison of data collected by GPS sensor units with data recorded by tri-axial accelerometers is carried out when dynamic vibrations are induced in the structure by movements of the internal bridge-crane. The elaborations from the GPS position readings are then compared with the results obtained by a Finite Element (FE) numerical simulation. The purposes are: i) to realize a refinement of the structural parameters which characterize the building and ii) to outline a suitable way for processing GPS data toward structural monitoring.

      • KCI등재

        Online correction of drift in structural identification using artificial white noise observations and an unscented Kalman Filter

        Eleni N. Chatzi,Clemente Fuggini 국제구조공학회 2015 Smart Structures and Systems, An International Jou Vol.16 No.2

        In recent years the monitoring of structural behavior through acquisition of vibrational data has become common practice. In addition, recent advances in sensor development have made the collection of diverse dynamic information feasible. Other than the commonly collected acceleration information, Global Position System (GPS) receivers and non-contact, optical techniques have also allowed for the synchronous collection of highly accurate displacement data. The fusion of this heterogeneous information is crucial for the successful monitoring and control of structural systems especially when aiming at real-time estimation. This task is not a straightforward one as measurements are inevitably corrupted with some percentage of noise, often leading to imprecise estimation. Quite commonly, the presence of noise in acceleration signals results in drifting estimates of displacement states, as a result of numerical integration. In this study, a new approach based on a time domain identification method, namely the Unscented Kalman Filter (UKF), is proposed for correcting the “drift effect” in displacement or rotation estimates in an online manner, i.e., on the fly as data is attained. The method relies on the introduction of artificial white noise (WN) observations into the filter equations, which is shown to achieve an online correction of the drift issue, thus yielding highly accurate motion data. The proposed approach is demonstrated for two cases; firstly, the illustrative example of a single degree of freedom linear oscillator is examined, where availability of acceleration measurements is exclusively assumed. Secondly, a field inspired implementation is presented for the torsional identification of a tall tower structure, where acceleration measurements are obtained at a high sampling rate and non-collocated GPS displacement measurements are assumed available at a lower sampling rate. A multi-rate Kalman Filter is incorporated into the analysis in order to successfully fuse data sampled at different rates.

      • KCI등재후보

        System identification of a super high-rise building via a stochastic subspace approach

        Lucia Faravelli,Filippo Ubertini,Clemente Fuggini 국제구조공학회 2011 Smart Structures and Systems, An International Jou Vol.7 No.2

        System identification is a fundamental step towards the application of structural health monitoring and damage detection techniques. On this respect, the development of evolved identification strategies is a priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be adopted as references for future structural health assessments. The paper presents the identification of the modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which proved to be successful in previous literature studies. This well-known approach is based on a clustering technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem, which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These records are then subdivided into a convenient number of data sets and the variability of modal parameter estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long records are considered for this purpose. A comparison with finite element model predictions is finally carried out, using the structural matrices provided within the benchmark, in order to check that all the structural modes contained in the considered frequency interval are effectively identified via SSI-data.

      • KCI등재후보

        Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

        Costas Papadimitriou,Paul Michelis,Grigoris K. Karaiskos,Dimitra-Christina Papadioti,Clemente Fuggini 국제구조공학회 2012 Smart Structures and Systems, An International Jou Vol.9 No.3

        Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the unreinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

      • SCIESCOPUS

        Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

        Michelis, Paul,Papadimitriou, Costas,Karaiskos, Grigoris K.,Papadioti, Dimitra-Christina,Fuggini, Clemente Techno-Press 2012 Smart Structures and Systems, An International Jou Vol.9 No.3

        Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼