RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An Improved ViBe Algorithm of Moving Target Extraction for Night Infrared Surveillance Video

        ( Zhiqiang Feng ),( Xiaogang Wang ),( Zhongfan Yang ),( Shaojie Guo ),( Xingzhong Xiong ) 한국인터넷정보학회 2021 KSII Transactions on Internet and Information Syst Vol.15 No.12

        For the research field of night infrared surveillance video, the target imaging in the video is easily affected by the light due to the characteristics of the active infrared camera and the classical ViBe algorithm has some problems for moving target extraction because of background misjudgment, noise interference, ghost shadow and so on. Therefore, an improved ViBe algorithm (I-ViBe) for moving target extraction in night infrared surveillance video is proposed in this paper. Firstly, the video frames are sampled and judged by the degree of light influence, and the video frame is divided into three situations: no light change, small light change, and severe light change. Secondly, the ViBe algorithm is extracted the moving target when there is no light change. The segmentation factor of the ViBe algorithm is adaptively changed to reduce the impact of the light on the ViBe algorithm when the light change is small. The moving target is extracted using the region growing algorithm improved by the image entropy in the differential image of the current frame and the background model when the illumination changes drastically. Based on the results of the simulation, the I-ViBe algorithm proposed has better robustness to the influence of illumination. When extracting moving targets at night the I-ViBe algorithm can make target extraction more accurate and provide more effective data for further night behavior recognition and target tracking.

      • KCI등재

        Wireless Synchronous Transfer of Power and Reverse Signals

        Yang Li,Yumei Li,Shaojie Feng,Qingxin Yang,Weihao Dong,Jingtai Zhao,Ming Xue 전력전자학회 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.3

        Wireless power transfer via coupled magnetic resonances has been a hot research topic in recent years. In addition, the number of related devices has also been increasing. However, reverse signals transfer is often required in addition to wireless power transfer. The structure of the circuit for a wireless power transfer system via coupled magnetic resonances is analyzed. The advantages and disadvantages of both parallel compensation and series compensation are listed. Then the compensation characteristics of the inductor, capacitor and resistor were studied and an appropriate compensation method was selected. The reverse signals can be transferred by controlling the compensation of the resistor. In addition, it can be demodulated by extracting the change of the primary current. A 3.3 MHz resonant frequency with a 100 kHz reverse signals transfer system platform was established in the laboratory. Experimental results demonstrate that wireless power and reverse signals can be transferred synchronously.

      • SCIESCOPUSKCI등재

        Wireless Synchronous Transfer of Power and Reverse Signals

        Li, Yang,Li, Yumei,Feng, Shaojie,Yang, Qingxin,Dong, Weihao,Zhao, Jingtai,Xue, Ming The Korean Institute of Power Electronics 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.3

        Wireless power transfer via coupled magnetic resonances has been a hot research topic in recent years. In addition, the number of related devices has also been increasing. However, reverse signals transfer is often required in addition to wireless power transfer. The structure of the circuit for a wireless power transfer system via coupled magnetic resonances is analyzed. The advantages and disadvantages of both parallel compensation and series compensation are listed. Then the compensation characteristics of the inductor, capacitor and resistor were studied and an appropriate compensation method was selected. The reverse signals can be transferred by controlling the compensation of the resistor. In addition, it can be demodulated by extracting the change of the primary current. A 3.3 MHz resonant frequency with a 100 kHz reverse signals transfer system platform was established in the laboratory. Experimental results demonstrate that wireless power and reverse signals can be transferred synchronously.

      • KCI등재

        The effect of cobalt ions doping in ZnCr2O4 spinel oxide for the catalytic activity of methane combustion

        He Jia,Shao Xiaoqiang,Su Qin,Zhao Donglin,Feng Shaojie,오원춘 한국세라믹학회 2023 한국세라믹학회지 Vol.60 No.1

        A series of novel cobalt ion-doped ZnCr2−xCoxO4 (x = 0, 0.1, 0.15, 0.2) spinel oxides were synthesized with the hydrothermal method. X-ray diffraction, scanning electron microscope, specific surface area, Raman spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption of oxygen, and other analytical techniques were used to characterize the structure, morphology, and catalytic performance of each sample. Experiment results showed that the doping of cobalt ion significantly promoted the phase crystallization of spinel oxide. Cobalt ion-doped ZnCr2−xCoxO4 (x = 0.1, 0.15, 0.2) nanoparticles with high specific surface area were synthesized at 773 K, with ZnCr2O4 forming a spinel phase at 1173 K. Catalytic experiments revealed that the catalytic activity of ZnCr2−xCoxO4 was effectively improved. Cobalt ion-doped ZnCr1.85Co0.15O4 catalyst catalyzed methane combustion reaction temperature at T90% (the temperature where 90% of methane was converted) of about 573 K, while the undoped ZnCr2O4 sample had the highest catalytic performance at T90% of about 773 K. The order of catalytic activity was: ZnCr1.85Co0.15O4 > ZnCr1.9Co0.1O4 > ZnCr1.8Co0.2O4 > ZnCr2O4. Results of catalytic experiments showed that the surface area of the catalyst increased after partial replacement of chromium ions by cobalt ions and that the increase in surface area of the catalyst provided more active sites, thus improving the reaction activity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼