RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        FUEL-SAVING CONTROL STRATEGY FOR FUEL VEHICLES WITH DEEP REINFORCEMENT LEARNING AND COMPUTER VISION

        Han Ling,Liu Guopeng,Zhang Hui,Fang Ruoyu,Zhu Changsheng 한국자동차공학회 2023 International journal of automotive technology Vol.24 No.3

        This study uses deep reinforcement learning (DRL) combined with computer vision technology to investigate vehicle fuel economy. In a driving cycle with car-following and traffic light scenarios, the vehicle fuel-saving control strategy based on DRL can realize the cooperative control of the engine and continuously variable transmission. The visual processing method of the convolutional neural network is used to extract available visual information from an on-board camera, and other types of information are obtained through the vehicle’s inherent sensor. The various detected types of information are further used as the state of DRL, and the fuel-saving control strategy is built. A Carla–Simulink co-simulation model is established to evaluate the proposed strategy. An urban road driving cycle and highway road driving cycle model with visual information is built in Carla, and the vehicle power system is constructed in Simulink. Results show that the fuel-saving control strategy based on DRL and computer vision achieves improved fuel economy. In addition, in the Carla–Simulink co-simulation model, the fuel-saving control strategy based on DRL and computer vision consumes an average time of 17.55 ms to output control actions, indicating its potential for use in real-time applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼