RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Development of fine grained concretes for textile reinforced cementitious composites

        Esma Gizem Daskiran,Mehmet M. Daskiran,Mustafa Gencoglu 사단법인 한국계산역학회 2016 Computers and Concrete, An International Journal Vol.18 No.2

        A new innovative composite material is textile reinforced cementitious composite (TRCC). To achieve high flexural performance researchers suggest polymermodification of TRCCmatrices. In this study, nine readymix repair mortars commonly used in construction industry and the production of TRCC elements were examined. Mechanical properties such as compressive and flexural strength, drying shrinkage were studied. Being a significant durability concern, alkali silica reaction tests were performed according to related standards. Results showed that, some ready repair mortar mixes are potentially reactive due to the alkali silica reaction. Two of the ready mortar mixes labelled as non-shrinkage in their technical data sheets showed the highest shrinkage. In this experiment, researchers designed new matrices. These matrices were fine grained concretes modified with polymer additives; latexes and redispersible powders. Two latexes and six redispersible powder polymers were used in the study. Mechanical properties of fine grained concretes such as compressive and flexural strengthswere determined.Results showed that some of the fine grained concretes cast with redispersible powders had higher flexural strength than ready mix repair mortars at 28 days. Matrix composition has to be designed for a suitable consistency for planned production processes ofTRCCandmechanical properties for load-carrying capacity.

      • KCI등재

        Effect of polymer addition on air void content of fine grained concretes used in TRCC

        Esma Gizem Daskiran,Mehmet Mustafa Daskiran,Mustafa Gencoglu 사단법인 한국계산역학회 2017 Computers and Concrete, An International Journal Vol.20 No.2

        Textile Reinforced Cementitious Composite (TRCC) became the most common construction material lately and have excellent properties. TRCC can be employed in the manufacture of thin-walled facade elements, load-bearing integrated formwork, tunnel linings or in the strengthening of existing structures. These composite materials are a combination of matrix and textile materials. There isn\'t much research done about the usage of polymer modified matrices in textile reinforced cementitious composites. In this study, matrix materials named as fine grained concretes (dmax 1.0 mm) were investigated. Air entraining effect of polymer modifiers were analyzed and air void content of fine grained concretes were identified with different methods. Aim of this research is to study the effect of polymer modification on the air content of fine grained concretes and the role of defoamer in controlling it. Polymer modifiers caused excessive air entrainment in all mixtures and defoamer material successfully lowered down the air content in all mixtures. Latex polymer modified mixtures had higher air content than redispersible powder modified ones. Air void analysis test was performed on selected mixtures. Air void parameters were compared with the values taken from air content meter. Close results were obtained with tests and air void analysis test found to be useful and applicable to fine grained concretes. Air void content in polymer modified matrix material used in TRCC found significant because of affecting mechanical and permeability parameters directly.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼