RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Therapeutic Strategy for the Prevention of Pseudorabies Virus Infection in C57BL/6 Mice by 3D8 scFv with Intrinsic Nuclease Activity

        Lee, Gunsup,Cho, SeungChan,Hoang, Phuong Mai,Kim, Dongjun,Lee, Yongjun,Kil, Eui-Joon,Byun, Sung-June,Lee, Taek-Kyun,Kim, Dae-Hyun,Kim, Sunghan,Lee, Sukchan Korean Society for Molecular and Cellular Biology 2015 Molecules and cells Vol.38 No.9

        3D8 single chain variable fragment (scFv) is a recombinant monoclonal antibody with nuclease activity that was originally isolated from autoimmune-prone MRL mice. In a previous study, we analyzed the nuclease activity of 3D8 scFv and determined that a HeLa cell line expressing 3D8 scFv conferred resistance to herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV). In this study, we demonstrate that 3D8 scFv could be delivered to target tissues and cells where it exerted a therapeutic effect against PRV. PRV was inoculated via intramuscular injection, and 3D8 scFv was injected intraperitoneally. The observed therapeutic effect of 3D8 scFv against PRV was also supported by results from quantitative reverse transcription polymerase chain reaction, southern hybridization, and immunohistochemical assays. Intraperitoneal injection of 5 and $10{\mu}g$ 3D8 scFv resulted in no detectable toxicity. The survival rate in C57BL/6 mice was 9% after intramuscular injection of 10 $LD_{50}$ PRV. In contrast, the 3D8 scFv-injected C57BL/6 mice showed survival rates of 57% ($5{\mu}g$) and 47% ($10{\mu}g$). The results indicate that 3D8 scFv could be utilized as an effective antiviral agent in several animal models.

      • SCIESCOPUSKCI등재

        Influence of stereoisomerism of epoxy hardeners on fracture toughness of carbon fiber/epoxy composites

        Dongjun Kwon,Minkyu Lee,Woong Kwon,Eunsoo Lee,Euigyung Jeong 한국탄소학회 2019 Carbon Letters Vol.29 No.5

        Interfacial adhesion between carbon fiber and epoxy resin mostly determine the mechanical properties of the carbon fiber/ epoxy composites and the chemical structures of epoxy resin and hardener plays an important role. In this regard, stereoisomerism of epoxy hardeners, such as 3,3′ and 4,4′-DDS (diaminodiphenylsulfone), can have significant influence on the fracture toughness of the cured epoxy and related carbon fiber composites. Therefore, this study aims to investigate the influence of stereoisomerism of epoxy hardeners on fracture toughness of the carbon fiber/epoxy composites. Triglycidyl aminophenol (TGAP) are selected as epoxy resin and 3,3′- and 4,4′-DDS are selected as epoxy hardener. Wetting behaviors and fiber matrix adhesion of TGAP/DDS mixtures onto carbon fiber are investigated and fracture toughness (KIC) of TGAP/ DDS mixtures are also investigated. Then, the mode II fracture toughness test of the carbon fiber/TGAP/DDS composites are carried out to investigate the influence of hardener stereoisomerism on fracture toughness of the resulting composites. Wetting and fiber matrix adhesion to carbon fiber of TGAP/3,3′-DDS was better than those of TGAP/4,4’-DDS and KIC of TGAP/3,3′-DDS was also better than that of TGAP/4,4′-DDS. As a result of the synergistic effect of better wetting, fiber matrix adhesion, and fracture toughness of TGAP/3,3′-DDS, the mode II fracture toughness of the carbon fiber/ TGAP/3,3’- DDS composites was almost twice of that of the carbon fiber/ TGAP/4,4′-DDS composites. Based on the results reported in this study, stereoisomerism of the epoxy hardeners can influence the fracture toughness of the resulting composites as well as that of the resin itself. In other words, only small difference, such as the spatial arrangement of the molecular structure of epoxy hardeners can cause huge difference in the mechanical properties of the resulting composites.

      • KCI등재

        Information Technology and Electronics ; Comparison of Three Normalization Methods for 3D Joint Moment in the Asymmetric Rotational Human Movements in Golf Swing Analysis

        ( Dongjune Lee ),( Seung Eel Oh ),( In Kwang Lee ),( Taeyong Sim ),( Su Bin Joo ),( Hyun Joon Park ),( Joung Hwan Mun ) 한국농업기계학회 2015 바이오시스템공학 Vol.40 No.3

        Purpose: From the perspective of biomechanics, joint moments quantitatively show a subject’s ability to perform actions. In this study, the effect of normalization in the fast and asymmetric motions of a golf swing was investigated by applying three different normalization methods to the raw joint moment. Methods: The study included 13 subjects with no previous history of musculoskeletal diseases. Golf swing analyses were performed with six infrared cameras and two force plates. The majority of the raw peak joint moments showed a significant correlation at p < 0.05. Additionally, the resulting effects after applying body weight (BW), body weight multiplied by height (BWH), and body weight multiplied by leg length (BWL) normalization methods were analyzed through correlation and regression analysis. Results: The BW, BWH, and BWL normalization methods normalized 8, 10, and 11 peak joint moments out of 18, respectively. The best method for normalizing the golf swing was found to be the BWL method, which showed significant statistical differences. Several raw peak joint moments showed no significant correlation with measured anthropometrics, which was considered to be related to the muscle coordination that occurs in the swing of skilled professional golfers. Conclusions: The results of this study show that the BWL normalization method can effectively remove differences due to physical characteristics in the golf swing analysis.

      • SCISCIESCOPUS

        Wearable Finger Tracking and Cutaneous Haptic Interface with Soft Sensors for Multi-Fingered Virtual Manipulation

        Lee, Yongjun,Kim, Myungsin,Lee, Yongseok,Kwon, Junghan,Park, Yong-Lae,Lee, Dongjun IEEE 2019 IEEE/ASME Transactions on Mechatronics Vol.24 No.1

        <P>Multi-Fingered haptics is imperative for truly immersive virtual reality experience, as many real-world tasks involve finger manipulation. One of the key lacking aspect for this is the absence of technologically and economically viable wearable haptic interfaces that can simultaneously track the finger/hand motions and display multi-degree-of-freedom (DOF) contact forces. In this paper, we propose a novel wearable cutaneous haptic interface (WCHI), which consists of 1) finger tracking modules (FTMs) to estimate complex multi-DOF finger and hand motion; and 2) cutaneous haptic modules (CHMs) to convey three-DOF contact force at the finger-tip. By opportunistically utilizing such different types of sensors as inertial measurement units, force sensitive resistor sensors, and soft sensors, the WCHI can track complex anatomically consistent multi-DOF finger motion while avoiding FTM-CHM electromagnetic interference possibly stemming from their collocation in the small form-factor interface; while also providing the direction and magnitude of three-DOF finger-tip contact force, the feedback of which can significantly enhance the precision of contact force generation against variability among users via their closed-loop control. Human subject study is performed with a virtual peg insertion task to show the importance of both the multi-DOF finger tracking and the three-DOF cutaneous haptic feedback for dexterous manipulation in virtual environment.</P>

      • Passive Configuration Decomposition and Passivity-Based Control of Nonholonomic Mechanical Systems

        Lee, Dongjun,Lui, Kent Yee IEEE 2017 IEEE transactions on robotics Vol.33 No.2

        <P>We propose a novel passivity-based stabilization control framework for a certain class of nonholonomic mechanical systems. First, we derive the notion of passive configuration decomposition, which enables us to configuration-level decompose the system's Lagrange-D'Alembert dynamics into two systems, each evolving on their respective configuration spaces and also individually inheriting Lagrangian structure and passivity from the original dynamics. We then propose passivity-based time-varying and passivity-based switching control schemes that, by utilizing some control actions defined on each of the configuration spaces of the two systems and also their interplay with the nonholonomic constraint, can achieve stabilization while exploiting the nonlinear dynamics of the decomposed dynamics. We also provide conditions under which the passive configuration decomposition is possible, establish an equivalence between certain conditions for the proposed controls and kinematic controllability, and elucidate robustness property of the proposed controls based on passivity. Finally, examples are provided along with their simulation and experimental results to illustrate the theory.</P>

      • KCI등재

        Comparison of Three Normalization Methods for 3D Joint Moment in the Asymmetric Rotational Human Movements in Golf Swing Analysis

        Lee, Dongjune,Oh, Seung Eel,Lee, In-Kwang,Sim, Taeyong,Joo, Su-bin,Park, Hyun-Joon,Mun, Joung Hwan Korean Society for Agricultural Machinery 2015 바이오시스템공학 Vol.40 No.3

        Purpose: From the perspective of biomechanics, joint moments quantitatively show a subject's ability to perform actions. In this study, the effect of normalization in the fast and asymmetric motions of a golf swing was investigated by applying three different normalization methods to the raw joint moment. Methods: The study included 13 subjects with no previous history of musculoskeletal diseases. Golf swing analyses were performed with six infrared cameras and two force plates. The majority of the raw peak joint moments showed a significant correlation at p < 0.05. Additionally, the resulting effects after applying body weight (BW), body weight multiplied by height (BWH), and body weight multiplied by leg length (BWL) normalization methods were analyzed through correlation and regression analysis. Results: The BW, BWH, and BWL normalization methods normalized 8, 10, and 11 peak joint moments out of 18, respectively. The best method for normalizing the golf swing was found to be the BWL method, which showed significant statistical differences. Several raw peak joint moments showed no significant correlation with measured anthropometrics, which was considered to be related to the muscle coordination that occurs in the swing of skilled professional golfers. Conclusions: The results of this study show that the BWL normalization method can effectively remove differences due to physical characteristics in the golf swing analysis.

      • KCI등재

        A Comparison of the Effects of Worker-Related Variables on Process Efficiency in a Manufacturing System Simulation

        Lee, Dongjune,Park, Hyunjoon,Choi, Ahnryul,Mun, Joung H. Korean Society for Agricultural Machinery 2013 바이오시스템공학 Vol.38 No.1

        Purpose: The goal of this study was to build an accurate digital factory that evaluates the performance of a factory using computer simulation. To achieve this goal, we evaluated the effect of worker-related variables on production in a simulation model using comparative analysis of two cases. Methods: The overall work process and worker-related variables were determined and used to build a simulation model. Siemens PLM Software's Plant Simulation was used to build a simulation model. Also, two simulation models were built, where the only difference was the use of the worker-related variable, and the total daily production analyzed and compared in terms of the individual process. Additionally, worker efficiency was evaluated based on worker analysis. Results: When the daily production of the two models were compared, a 0.16% error rate was observed for the model where the worker-related variables were applied and error rate was approximately 5.35% for the model where the worker-related variables were not applied. In addition, the production in the individual processes showed lower error rate in the model that included the worker-related variables than the model where the worker-related variables were not used. Also, among the total of 22 workers, only three workers satisfied the IFRS (International Financial Reporting Standards) suggested worker capacity rate (90%). Conclusions: In the daily total production and individual process production, the model that included the worker-related variables produced results that were closer to the real production values. This result indicates the importance of worker elements as input variables, in regards to building accurate simulation models. Also, as suggested in this study, the model that included the worker-related variables can be utilized to analyze in more detail actual production. The results from this study are expected to be utilized to improve the work process and worker efficiency.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼