RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Investigation on Dissolution and Removal of Adhered LiCl-KCl-UCl<sub>3</sub> Salt From Electrodeposited Uranium Dendrites using Deionized Water, Methanol, and Ethanol

        Killinger, Dimitris Payton,Phongikaroon, Supathorn Korean Radioactive Waste Society 2020 방사성폐기물학회지 Vol.18 No.4

        Deionized water, methanol, and ethanol were investigated for their effectiveness at dissolving LiCl-KCl-UCl3 at 25, 35, and 50℃ using inductively coupled plasma mass spectrometry (ICP-MS) to study the concentration evolution of uranium and mass ratio evolutions of lithium and potassium in these solvents. A visualization experiment of the dissolution of the ternary salt in solvents was performed at 25℃ for 2 min to gain further understanding of the reactions. Aforementioned solvents were evaluated for their performance on removing the adhered ternary salt from uranium dendrites that were electrochemically separated in a molten LiCl-KCl-UCl3 electrolyte (500℃) using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Findings indicate that deionized water is best suited for dissolving the ternary salt and removing adhered salt from electrodeposits. The maximum uranium concentrations detected in deionized water, methanol, and ethanol for the different temperature conditions were 8.33, 5.67, 2.79 μg·L-1 for 25℃, 10.62, 5.73, 2.50 μg·L-1 for 35℃, and 11.55, 6.75, and 4.73 μg·L-1 for 50℃. ICP-MS analysis indicates that ethanol did not take up any KCl during dissolutions investigated. SEM-EDS analysis of ethanol washed uranium dendrites confirmed that KCl was still adhered to the surface. Saturation criteria is also proposed and utilized to approximate the state of saturation of the solvents used in the dissolution trials.

      • KCI등재

        Review, Assessment, and Learning Lesson on How to Design a Spectroelectrochemical Experiment for the Molten Salt System

        Dimitris Killinger,Supathorn Phongikaroon 한국방사성폐기물학회 2022 방사성폐기물학회지 Vol.20 No.2

        This work provided a review of three techniques—(1) spectrochemical, (2) electrochemical, and (3) spectroelectrochemical– for molten salt medias. A spectroelectrochemical system was designed by utilizing this information. Here, we designed a spectroelectrochemical cell (SEC) and calibrated temperature controllers, and performed initial tests to explore the system’s capability limit. There were several issues and a redesign of the cell was accomplished. The modification of the design allowed us to assemble, align the system with the light sources, and successfully transferred the setup inside a controlled environment. A preliminary run was executed to obtain transmission and absorption background of NaCl-CaCl2 salt at 600°C. It shows that the quartz cuvette has high transmittance effects across all wavelengths and there were lower transmittance effects at the lower wavelength in the molten salt media. Despite a successful initial run, the quartz vessel was mated to the inner cavity of the SEC body. Moreover, there was shearing in the patch cord which resulted in damage to the fiber optic cable, deterioration of the SEC, corrosion in the connection of the cell body, and fiber optic damage. The next generation of the SEC should attach a high temperature fiber optic patch cords without introducing internal mechanical stress to the patch cord body. In addition, MACOR should be used as the cell body materials to prevent corrosion of the surface and avoid the mating issue and a use of an adapter from a manufacturer that combines the free beam to a fiber optic cable should be incorporated in the future design.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼