RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • The Development of a Power System of the Combination of Diesel Generator and UPS

        Dawei Qiu,Satoshi Uda,Hironori Kashihara,Yuki Fukuda,Naoya Okazaki,Shoji Nishimura,Yoshinori Kawasaki 전력전자학회 2019 ICPE(ISPE)논문집 Vol.2019 No.5

        This paper shows the development of a power supply system to solve the anomalous voltage sag, power failure and peak cut demand. This power supply system includes an UPS (Uninterruptible Power Supply), a standby generator and a Hybrid Switch, which is the integration of mechanical switches and IGBTs with good performance of low conducting loss and fast opening time. The results of a real-time simulation demonstrate its voltage compensation can perform within 2 ms response time when power failure occurs and transfer without voltage down between micro grid operation and gird-connected operation. Also, they are successfully validated by using a prototype system.

      • KCI등재

        TGF-β promotes pericyte-myofibroblast transition in subretinal fibrosis through the Smad2/3 and Akt/mTOR pathways

        Zhao Zhenzhen,Zhang Yumeng,Zhang Chaoyang,Zhang Jingting,Luo Xueting,Qiu Qinghua,Luo Dawei,Zhang Jingfa 생화학분자생물학회 2022 Experimental and molecular medicine Vol.54 No.-

        Subretinal fibrosis remains a major obstacle to the management of neovascular age-related macular degeneration. Choroidal pericytes were found to be a significant source of subretinal fibrosis, but the underlying mechanisms of pericyte-myofibroblast transition (PMT) remain largely unknown. The goal of this study was to explore the role and potential mechanisms by which PMT contributes to subretinal fibrosis. Choroidal neovascularization (CNV) was induced by laser photocoagulation in transgenic mice with the collagen1α1-green fluorescent protein (Col1α1-GFP) reporter, and recombinant adeno-associated virus 2 (rAAV2)-mediated TGF-β2 (rAAV2-TGF-β2) was administered intravitreally to further induce PMT. Primary mouse choroidal GFP-positive pericytes were treated with TGF-β2 in combination with siRNAs targeting Smad2/3, the Akt inhibitor MK2206 or the mTOR inhibitor rapamycin to examine cell proliferation, migration, and differentiation into myofibroblasts. The involvement of the Akt/mTOR pathway in PMT in subretinal fibrosis was further investigated in vivo. Intraocular TGF-β2 overexpression induced GFP-positive pericyte infiltration and PMT in subretinal fibrosis, which was mimicked in vitro. Knockdown of Smad2/3 or inhibition of Akt/mTOR decreased cell proliferation, PMT and migration in primary mouse pericytes. Combined inhibition of Smad2/3 and mTOR showed synergistic effects on attenuating α-smooth muscle actin (α-SMA) expression and cell proliferation. In mice with laser-induced CNV, the administration of the Akt/mTOR inhibitors suppressed pericyte proliferation and alleviated the severity of subretinal fibrosis. Our results showed that PMT plays a pivotal role in subretinal fibrosis, which was induced by TGF-β2 through the Smad2/3 and Akt/mTOR pathways. Thus, inhibiting PMT may be a novel strategy for the treatment of subretinal fibrosis.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼