RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Low cost adsorbents obtained from ash for copper removal

        Maria Harja,Gabriela Buema,Daniel-Mircea Sutiman,Corneliu Munteanu,Daniel Bucur 한국화학공학회 2012 Korean Journal of Chemical Engineering Vol.29 No.12

        We investigated the utilization of ash and modified ash as a low-cost adsorbent to remove copper ions from aqueous solutions such as wastewater. Batch experiments were conducted to determine the factors affecting adsorption of copper. The influence of pH, adsorbent dose, initial Cu2+ concentration, type of adsorbent and contact time on the adsorption capacity of Cu2+ from aqueous solution by the batch adsorption technique using ash and modified ash as a low-cost adsorbent were investigated. The optimum pH required for maximum adsorption was found to be 5. The results from the sorption process showed that the maximum adsorption rate was obtained at 300 mg/L when a different dosage of fly ash was added into the solution, and it can be concluded that decreasing the initial concentration of copper ion is beneficial to the adsorption capacity of the adsorbent. With the increase of pH value, the removal rate increased. When the pH was 5, the removal rate reached the maximum of over 99%. When initial copper content was 300 mg/L and the pH value was 5, the adsorption capacity of the zeolite Z 4 sample reached 27.904 mg/g. The main removal mechanisms were assumed to be the adsorption at the surface of the fly ash together with the precipitation from the solution. The adsorption equilibrium was achieved at pH 5 between 1 and 4 hours in function of type of adsorbent. A dose of 1 : 25 g/mL of adsorbent was sufficient for the optimum removal of copper ions. For all synthesized adsorbents the predominant mechanism can be described by pseudo-second order kinetics.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼