RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm

        Musa Artar,Ayşe T. Daloğlu 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.73 No.2

        The effect of soil foundation plays active role in optimum design of steel space frames when included. However, its influence on design can be calculated after a long iterative procedure. So it requires longer computer time and more computational effort if it is done properly. The main purpose of this study is to investigate how these effects can be calculated in more practical way in a shorter time. The effects of semi-rigid column bases are taken into account in optimum design of steel space frames. This study is carried out by using JAYA algorithm which is a novel and practical method based on a single revision equation. The displacement, stress and geometric size constraints are considered in the optimum design. A computer program is coded in MATLAB to achieve corporation with SAP2000-OAPI (Open Application Programming Interface) for optimum solutions. Four different steel space frames including soil structure interaction taken from literature are investigated according to different semi-rigidly supported models depending on different rotational stiffness values. And the results obtained from analyses are compared with the results available in reference studies. The results of the study show that semi-rigidly supported systems in the range of appropriate rotational stiffness values offer practical solutions in a very short time. And close agreement is obtained with the studies on optimum design of steel space frames including soil effect underneath.

      • KCI등재

        Optimum design of steel space frames with composite beams using genetic algorithm

        Musa Artar,Ayşe T. Daloğlu 국제구조공학회 2015 Steel and Composite Structures, An International J Vol.19 No.2

        This paper presents an optimization process using Genetic Algorithm (GA) for minimum weight by selecting suitable standard sections from a specified list taken from American Institute of Steel Construction (AISC). The stress constraints obeying AISC-LRFD (American Institute of Steel Construction - Load and Resistance Factor Design), lateral displacement constraints being the top and inter-storey drift, mid-span deflection constraints for the beams and geometric constraints are considered for optimum design by using GA that mimics biological processes. Optimum designs for three different space frames taken from the literature are carried out first without considering concrete slab effects in finite element analyses for the constraints above and the results are compared with the ones available in literature. The same optimization procedures are then repeated for the case of space frames with composite (steel and concrete) beams. A program is coded in MATLAB for the optimization processes. Results obtained in the study showed that consideration of the contribution of the concrete on the behavior of the floor beams results with less steel weight and ends up with more economical designs.

      • KCI등재

        Optimum design of steel frames with semi-rigid connections and composite beams

        Musa Artar,Ayşe T. Daloğlu 국제구조공학회 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.55 No.2

        In this paper, an optimization process using Genetic Algorithm (GA) that mimics biological processes is presented for optimum design of planar frames with semi-rigid connections by selecting suitable standard sections from a specified list taken from American Institute of Steel Construction (AISC). The stress constraints as indicated in AISC-LRFD (American Institute of Steel Construction - Load and Resistance Factor Design), maximum lateral displacement constraints and geometric constraints are considered for optimum design. Two different planar frames with semi-rigid connections taken from the literature are carried out first without considering concrete slab effects in finite element analyses and the results are compared with the ones available in literature. The same optimization procedures are then repeated for full and semi rigid planar frames with composite (steel and concrete) beams. A program is developed in MATLAB for all optimization procedures. Results obtained from this study proved that consideration of the contribution of the concrete on the behavior of the floor beams provides lighter planar frames.

      • KCI등재

        Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm

        Musa Artar,Ayşe T. Daloğlu 국제구조공학회 2015 Steel and Composite Structures, An International J Vol.19 No.4

        A genetic algorithm-based minimum weight design method is presented for steel frames containing composite beams, semi-rigid connections and column bases. Genetic Algorithms carry out optimum steel frames by selecting suitable profile sections from a specified list including 128 W sections taken from American Institute of Steel Construction (AISC). The displacement and stress constraints obeying AISC Allowable Stress Design (ASD) specification and geometric (size) constraints are incorporated in the optimization process. Optimum designs of three different plane frames with semi-rigid beam-to-column and column-to-base plate connections are carried out first without considering concrete slab effects on floor beams in finite element analyses. The same optimization procedures are then repeated for the case of frames with composite beams. A program is coded in MATLAB for all optimization procedures. Results obtained from the examples show the applicability and robustness of the method. Moreover, it is proved that consideration of the contribution of concrete on the behavior of the floor beams enables a lighter and more economical design for steel frames with semi-rigid connections and column bases.

      • KCI등재

        Optimum design of steel space truss towers under seismic effect using Jaya algorithm

        Musa Artar,Ayşe T. Daloğlu 국제구조공학회 2019 Structural Engineering and Mechanics, An Int'l Jou Vol.71 No.1

        This study investigates optimum designs of steel space truss towers under seismic loading by using Jaya optimization algorithm. Turkish Earthquake Code (2007) specifications are applied on optimum designs of steel space truss towers under the seismic loading for different local site classes depending on different soil groups. The proposed novel algorithm does not have any algorithm-specific control parameters and depends only a simple revision equation. Therefore, it provides a practical solution for structural optimization problems. Optimum solutions of the different steel truss examples are carried out by selecting suitable W sections taken from American Institute of Steel Construction (AISC). In order to obtain optimum solutions, a computer program is coded in MATLAB in corporated with SAP2000-OAPI (Open Application Programming Interface). The stress and displacement constraints are applied on the design problems according to AISC-ASD (Allowable Stress Design) specifications. Firstly, a benchmark truss problem is examined to see the efficiency of Jaya optimization algorithm. Then, two different multi-element truss towers previously solved with other methods without seismic loading in literature are designed by the proposed algorithm. The first space tower is a 582-member space truss with the height of 80 m and the second space tower is a 942-member space truss of about 95 m height. The minimum optimum designs obtained with this novel algorithm for the case without seismic loading are lighter than the ones previously attained in the literature studies. The results obtained in the study show that Jaya algorithm is a practical and robust optimization method for structural optimization problems. Moreover, incorporation of the seismic loading causes significant increase in the minimum design weight.

      • KCI등재

        Evaluation of Vancomycin Resistance 3 Multiplexed PCR Assay for Detection of Vancomycin-Resistant Enterococci from Rectal Swabs

        Yesim Cekin,Aylin Erman Daloğlu,Dilara Öğünç,Betil Özhak Baysan,Duygu Dağlar,Dilara İnan,Derya Mutlu,Gözde Öngüt,Dilek Çolak 대한진단검사의학회 2013 Annals of Laboratory Medicine Vol.33 No.5

        Background: Active screening for vancomycin-resistant enterococci (VRE) using rectal specimens is recommended to limit the spread of antimicrobial resistance within certain high-risk populations. We evaluated the diagnostic performance of Vancomycin Resistance 3 Multiplexed Tandem PCR assay (AusDiagnostics, Australia), a rapid multiplex realtime PCR assay that detects vanA and/or vanB. Methods: Two-hundred-and-eleven rectal swabs from Hematology and Oncology unit were submitted for VRE surveillance via direct detection of vanA and/or vanB by culture and by using Vancomycin Resistance 3 Multiplexed Tandem PCR assay. Enterococci were identified to the species level by using standard biochemical tests and BD Phoenix Automated Microbiology System (BD Diagnostic Systems, USA). Vancomycin susceptibility of enterococci was determined using Etest (BioMerieux, France). Results: Compared to the culture method, Vancomycin Resistance 3 Multiplexed Tandem PCR assay had a sensitivity of 84.0%, specificity of 98.8%, positive predictive value (PPV)of 91.3%, and negative predictive value (NPV) of 97.6%. The assay failed to detect 18(8.5%) specimens because of the presence of PCR inhibitors; of the remaining 193 specimens,25 (12.9%) were positive, 23 for vanA, and 2 for vanB. Although both sensitivity and specificity for vanA VRE was 100% compared to the culture method, all vanB-positive specimens tested negative by VRE culture. Conclusions: Vancomycin Resistance 3 Multiplexed Tandem PCR assay is a rapid and laborsaving option for VRE surveillance for direct use on rectal swabs. However, the high rate of PCR failure owing to the inhibitors in the specimens and the low specificity for vanB should be considered when interpreting the results.

      • Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions

        Michalak, Anna M.,Anderson, Eric J.,Beletsky, Dmitry,Boland, Steven,Bosch, Nathan S.,Bridgeman, Thomas B.,Chaffin, Justin D.,Cho, Kyunghwa,Confesor, Rem,Daloğ,lu, Irem,DePinto, Joseph V.,Evans, M National Academy of Sciences 2013 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.110 No.16

        <P>In 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak intensity over three times greater than any previously observed bloom. Here we show that long-term trends in agricultural practices are consistent with increasing phosphorus loading to the western basin of the lake, and that these trends, coupled with meteorological conditions in spring 2011, produced record-breaking nutrient loads. An extended period of weak lake circulation then led to abnormally long residence times that incubated the bloom, and warm and quiescent conditions after bloom onset allowed algae to remain near the top of the water column and prevented flushing of nutrients from the system. We further find that all of these factors are consistent with expected future conditions. If a scientifically guided management plan to mitigate these impacts is not implemented, we can therefore expect this bloom to be a harbinger of future blooms in Lake Erie.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼