RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Review on the Usage of RTKLIB for Precise Navigation of Unmanned Vehicles

        Lim, Cheolsoon,Lee, Yongjun,Cho, Am,Park, Byungwoon 항법시스템학회 2021 Journal of Positioning, Navigation, and Timing Vol.10 No.4

        Real-Time Kinematic (RTK) is a phase-based differential GNSS technique and uses additional observations from permanent reference stations to mitigate or eliminate effects like atmospheric delays or satellite clocks and orbit errors. In particular, as the position accuracy required in the fields of autonomous vehicles and drones is gradually increasing, the demand for RTK-based precise navigation that can provide cm-level position is increasing. Recently, with the rapid growth of the open-source software market, the use of open-source software for building navigation system of unmanned vehicles, which is difficult to mount an expensive GNSS receivers, is gradually increasing. RTKLIB is an open-source software package that can perform RTK positioning and is widely used for research and education purposes. However, since the performance and stability of RTK algorithm of RTKLIB is inevitably inferior to that of commercial GNSS receivers, users need to verify whether RTKLIB can satisfy the navigation performance requirements of unmanned vehicles. Therefore, in this paper, the performance evaluation of the RTK positioning algorithm of RTKLIB was performed using GNSS observation data acquired in a dynamic environment. Therefore, in this paper, the RTK positioning performance of RTKLIB was evaluated using GNSS observation data acquired in a dynamic environment. Our results show that the current RTK algorithm of RTKLIB is not suitable for precise navigation of unmanned vehicles.

      • KCI등재

        Monitoring QZSS CLAS-based VRS-RTK Positioning Performance

        Cheolsoon Lim,Yebin Lee,Yunho Cha,Byungwoon Park,Sul-Gee Park,Sanghyun Park 사단법인 항법시스템학회 2022 Journal of Positioning, Navigation, and Timing Vol.11 No.4

        The Centimeter Level Augmentation Service (CLAS) is the Precise Point Positioning (PPP) – Real Time Kinematic (RTK) correction service utilizing the Quasi-Zenith Satellite System (QZSS) L6 (1278.65 MHz) signal to broadcast the Global Navigation Satellite System (GNSS) error corrections. Compact State-Space Representation (CSSR) corrections for mitigating GNSS measurement error sources such as satellite orbit, clock, code and phase biases, tropospheric error, ionospheric error are estimated from the ground segment of QZSS CLAS using the code and carrier-phase measurements collected in the Japan’s GNSS Earth Observation Network (GEONET). Since the CLAS service begun on November 1, 2018, users with dedicated receivers can perform cm-level precise positioning using CSSR corrections. In this paper, CLAS-based VRS-RTK performance evaluation was performed using Global Positioning System (GPS) observables collected from the refence station, TSK2, located in Japan. As a result of performing GPS-only RTK positioning using the open-source software CLASLIB and RTKLIB, it took about 15 minutes to resolve the carrier-phase ambiguities, and the RTK fix rate was only about 41%. Also, the Root Mean Squares (RMS) values of position errors (fixed only) are about 4cm horizontally and 7 cm vertically.

      • KCI등재

        기선 거리에 따른 VRS와 FKP 방식의 Network RTK 사용자 성능 비교

        임철순 ( Cheolsoon Lim ),박병운 ( Byungwoon Park ) 한국항행학회 2020 韓國航行學會論文誌 Vol.24 No.6

        본 논문에서는 기선 거리에 따른 VRS (virtual reference station)와 FKP (flächen korrektur parameter) 방식의 Network RTK (real time kinematics) 사용자 성능을 비교 분석하였다. 이를 위해 현재 국토지리정보원에서 운영 중인 VRS 및 FKP 서비스를 통해 기선 거리 별 보정정보를 취득하여 상용 수신기에 적용한 후, RTK 수행 결과를 측정치 영역과 위치 영역에서 각각 분석하였다. VRS의 경우, 사용자가 기선 거리가 증가함에 따라 발생하는 공간이격 오차를 보상하지 못하므로 전반적인 RTK 성능이 저하되는 것을 확인하였다. 반면, FKP는 VRS와 달리 전리층 및 비전리층 오차의 구배를 이용하여 사용자와 기준국 간 측정치의 공간이격 오차를 보상하므로 기선 거리 약 130 km 수준까지는 기선 거리 증가하더라도 VRS에 비해 안정적인 RTK 성능을 보여주었지만, 150 km이상의 장기저선의 경우에는 FKP 보정정보의 성능 감소로 인해 미지정수 오결정 등의 문제가 발생하였다. In this paper, the performances of virtual reference station (VRS) and flächen korrektur parameter (FKP) based Network real time kinematics (RTK) according to baseline length were compared and analyzed. We applied the VRS and FKP corrections for each baseline length obtained from National Geographic Information Institute Network RTK services to an FKP-supported commercial receiver and analyzed the RTK results in the range and position domains. In the case of VRS, RTK performance was degraded due to the spatial error, which increase in proportion of the baseline length. On the other hand, FKP compensates for spatial errors by using the gradients of dispersive and non-dispersive errors, so it showed stable RTK performance compared to VRS even if the baseline length increases up to 130 km. However, in the case of long baseline of 150 km or more, integer ambiguities were incorrectly fixed due to the decrease in the performance of the FKP corrections.

      • KCI등재

        Performance Analysis of GNSS Residual Error Bounding for QZSS CLAS

        Yebin Lee,Cheolsoon Lim,Yunho Cha,Byungwoon Park,Sul-Gee Park,Sanghyun Park 사단법인 항법시스템학회 2023 Journal of Positioning, Navigation, and Timing Vol.12 No.3

        The State Space Representation (SSR) method provides individual corrections for each Global Navigation Satellite System (GNSS) error components. This method can lead to less bandwidth for transmission and allows selective use of each correction. Precise Point Positioning (PPP) - Real-Time Kinematic (RTK) is one of the carrier-based precise positioning techniques using SSR correction. This technique enables high-precision positioning with a fast convergence time by providing atmospheric correction as well as satellite orbit and clock correction. Currently, the positioning service that supports PPPRTK technology is the Quazi-Zenith Satellite System Centimeter Level Augmentation System (QZSS CLAS) in Japan. A system that provides correction for each GNSS error component, such as QZSS CLAS, requires monitoring of each error component to provide reliable correction and integrity information to the user. In this study, we conducted an analysis of the performance of residual error bounding for each error component. To assess this performance, we utilized the correction and quality indicators provided by QZSS CLAS. Performance analyses included the range domain, dispersive part, non-dispersive part, and satellite orbit/clock part. The residual root mean square (RMS) of CLAS correction for the range domain approximated 0.0369 m, and the residual RMS for both dispersive and non-dispersive components is around 0.0363 m. It has also been confirmed that the residual errors are properly bounded by the integrity parameters. However, the satellite orbit and clock part have a larger residual of about 0.6508 m, and it was confirmed that this residual was not bounded by the integrity parameters. Users who rely solely on satellite orbit and clock correction, particularly maritime users, thus should exercise caution when utilizing QZSS CLAS.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼