RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Artificial Photosynthesis Using Zeolites

        Castagnola, Norma B.,Dutta, Prabir K. Korean Society of Photoscience 1999 Journal of Photosciences Vol.6 No.3

        Zeolites and microporouos materials continue to attract attention as novel hosts for photochemical reactions. Zeolities are attractive because of their ability to selectivity exchange and incorporate species within the void spaces and interconnecting channels, providing a spatial arrangement of molecules. Our research has primarily focused on intrazeolitic electron transfer from excited Ru(bpy)32+ in supercages of zeolite Y to a series of bipyridinium ions. In the Ru(bpy)32+ viologen-zeolite Y samples, the slowing of the back electron transfer from the bipyridinium radical cation to Ru(bpy)32+ allows for charge propagation via self exchange between diquat molecules. This provides an opportunity for permanent charge separation. When the migrating charge on the diquat radical within the zeolite reaches the surface, it can be transferred to a neutral viologen (PVS) in solution, resulting in permanent charge separation. The advantage of long-lived charge separation can be exploited for useful chemistry if suitable catablysts can be assembled on the zeolities. We have studied Ru(bpy)2 as water oxdiation catalysts. We have demonstrated that synthesis of RuO2 fibers on a zeolite via thermal decomposition of Ru3(CO)12 leads to the most active water decomposition catalyst reported to date. Because of the extensive interest of photochemical water reduction to H2, much is known about catalytic systems usin gone electron catalyst, and even more importantly, that no reaction of viologen occurred with H2 over this catalyst. The present challenge is to incorporate all these elements of the system into an architecture and we are examining zeolite membranes for this purpose.

      • KCI등재

        Comparison of shaping ability of the Reciproc Blue and One Curve with or without glide path in simulated S-shaped root canals

        Biasillo Vincenzo,Castagnola Raffaella,Colangeli Mauro,Panzetta Claudia,Minciacchi Irene,Plotino Gianluca,Staffoli Simone,Marigo Luca,Grande Nicola Maria 대한치과보존학회 2022 Restorative Dentistry & Endodontics Vol.47 No.1

        Objectives This study aimed to assess the impact of a glide-path on the shaping ability of 2 single-file instruments and to compare the centering ability, maintenance of original canal curvatures and area of instrumentation in simulated S-shaped root canals. Materials and Methods Forty simulated S-shaped root canals were used and were prepared with One Curve (group OC), One G and OC (group GOC), Reciproc Blue (group RB) and R-Pilot and RB (group PRB) and scanned before and after instrumentation. The images were analyzed using AutoCAD. After superimposing the samples, 4 levels (D1, D2, D3, and D4) and 2 angles (Δ1 and Δ2) were established to evaluate the centering ability and modification of the canal curvatures. Then, the area of instrumentation (ΔA) was measured. The data were analyzed using 2-way analysis of variance and Tukey's test for multiple comparisons (p < 0.05). Results Regarding the centering ability in the apical part (D3, D4), the use of the glide-path yielded better results than the single-file groups. Among the groups at D4, OC showed the worst results (p < 0.05). The OC system removed less material (ΔA) than the RB system, and for Δ1, OC yielded a worse result than RB (p < 0.05). Conclusions The glide-path improved the centering ability in the apical part of the simulated S-shaped canals. The RB system showed a better centering ability in the apical part and major respect of the canal curvatures compared with OC system. Objectives This study aimed to assess the impact of a glide-path on the shaping ability of 2 single-file instruments and to compare the centering ability, maintenance of original canal curvatures and area of instrumentation in simulated S-shaped root canals. Materials and Methods Forty simulated S-shaped root canals were used and were prepared with One Curve (group OC), One G and OC (group GOC), Reciproc Blue (group RB) and R-Pilot and RB (group PRB) and scanned before and after instrumentation. The images were analyzed using AutoCAD. After superimposing the samples, 4 levels (D1, D2, D3, and D4) and 2 angles (Δ1 and Δ2) were established to evaluate the centering ability and modification of the canal curvatures. Then, the area of instrumentation (ΔA) was measured. The data were analyzed using 2-way analysis of variance and Tukey's test for multiple comparisons (p < 0.05). Results Regarding the centering ability in the apical part (D3, D4), the use of the glide-path yielded better results than the single-file groups. Among the groups at D4, OC showed the worst results (p < 0.05). The OC system removed less material (ΔA) than the RB system, and for Δ1, OC yielded a worse result than RB (p < 0.05). Conclusions The glide-path improved the centering ability in the apical part of the simulated S-shaped canals. The RB system showed a better centering ability in the apical part and major respect of the canal curvatures compared with OC system.

      • Mitochondrial Damage and Metabolic Compensatory Mechanisms Induced by Hyperoxia in the U-937 Cell Line

        Scatena, Roberto,Messana, Irene,Martorana, Giuseppe Ettore,Gozzo, Maria Luisa,Lippa, Silvio,Maccaglia, Alessandro,Bottoni, Patrizia,Vincenzoni, Federica,Nocca, Giuseppina,Castagnola, Massimo,Giardina, Korean Society for Biochemistry and Molecular Biol 2004 Journal of biochemistry and molecular biology Vol.37 No.4

        Experimental hyperoxia represents a suitable in vitro model to study some pathogenic mechanisms related to oxidative stress. Moreover, it allows the investigation of the molecular pathophysiology underlying oxygen therapy and toxicity. In this study, a modified experimental set up was adopted to accomplish a model of moderate hyperoxia (50% $O_2$, 96 h culture) to induce oxidative stress in the human leukemia cell line, U-937. Spectrophotometric measurements of mitochondrial respiratory enzyme activities, NMR spectroscopy of culture media, determination of antioxidant enzyme activities, and cell proliferation and differentiation assays were performed. The data showed that moderate hyperoxia in this myeloid cell line causes: i) intriguing alterations in the mitochondrial activities at the levels of succinate dehydrogenase and succinate-cytochrome c reductase; ii) induction of metabolic compensatory adaptations, with significant shift to glycolysis; iii) induction of different antioxidant enzyme activities; iv) significant cell growth inhibition and v) no significant apoptosis. This work will permit better characterization the mitochondrial damage induced by hyperoxia. In particular, the data showed a large increase in the succinate cytochrome c reductase activity, which could be a fundamental pathogenic mechanism at the basis of oxygen toxicity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼