RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Precursor and dispersion effects of active species on the activity of Mn-Ce-Ti catalysts for NO abatement

        Xiaobo Wang,Jie Zhou,Caojian Jiang,Jia Wang,Keting Gui,Hywel Rhys Thomas 한국화학공학회 2019 Korean Journal of Chemical Engineering Vol.36 No.12

        Mn-Ce-Ti catalysts were prepared by different precursors (including manganese nitrate, manganese acetate, and manganese chloride) and used for selective catalytic reduction (SCR) of NO with ammonia. The relationships among the structure, physicochemical properties, and catalytic activity were explored by N2 adsorption/desorption, X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR), NH3-temperature programmed desorption (NH3TPD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), scanning electron microprobe (SEM) and energy dispersive spectroscopy (EDS) techniques. The results show that the different Mn precursors play important roles in the catalytic activity. The Mn-Ce-Ti(N) catalyst synthesized by manganese nitrate precursor exhibits the best catalytic activity, while the Mn-Ce-Ti(C) and Mn-Ce-Ti(Cl) catalyst prepared by manganese acetate and manganese chloride, respectively, exhibit relatively low catalytic activity. The manganese nitrate precursor could promote the specific surface area and redox ability, enhance the amounts of Brønsted and Lewis acid sites, and enrich the surface active species such as Mn4+, Ce3+ and surface chemisorbed oxygen of the catalyst, all of which will contribute to the SCR performance. Moreover, the Mn-Ce-Ti(N) catalyst possesses highly dispersed and uniform surface active species, which will result in the optimal physicochemical properties and superior catalytic performance.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼