RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Parametric study of the convergence of deep tunnels with long term effects: Abacuses

        Quevedo, Felipe P.M.,Bernaud, Denise Techno-Press 2018 Geomechanics & engineering Vol.15 No.4

        The objective of this paper is to present abacuses obtained from a parametric study of deep-lined tunnels using a numerical finite element model. This numerical model was implemented in software GEOMEC91, which is a two-dimensional axisymmetric model that considers the progress of excavation and the placing of the lining through the activation and deactivation of elements. It is adopted a step of excavation constant (1/3 of radius), constant velocity and circular cross section along the tunnel axis. It is used for rock mass a viscoplastic constitutive law with von-Mises criterion of viscoplasticity without hardening whose deformation rate over time is given by the Bingham model. The lining uses a linear elastic constitutive law. In total are 1716 analysis presented in 60 abacuses that show the value of ultimate convergence ($U_{eq}$) due to tunneling speed. In addition, it is shown an example of the use of the abacuses to determine the ultimate convergence ($U_{eq}$) of the tunnel and pressure ($P_{eq}$) on the lining.

      • SCISCIESCOPUSKCI등재

        Elastoplastic Analysis of Inclusion Reinforced Structures

        Sudret, Bruno,Samir, Maghous Patrick de Buhan,Bernaud, Denise 대한금속재료학회(대한금속학회) 1998 METALS AND MATERIALS International Vol.4 No.3

        An analytical model for assessing the global elastoplastic behaviour of inclusion-reinforced materials is presented in this contribution. It is based upon a description of the reinforced material as a two-phase composite system, namely a matrix material and the reinforcements which are assumed to behave as tensile-compressive load carrying elements. An anisotropic elastoplastic constitutive law exhibiting work-hardening is then derived in an explicit form. It involves a number of hardening parameters equal to the number of reinforcing directions. Such a model, which is readily implementable in a finite element computer code, is applied to the numerical simulation of the settlement of a shallow strip footing resting upon a soil reinforced in two symmetric directions ($quot;micropiling technique$quot;). The load-settlement curve predicted from using the work-hardening model is finally compared with that deduced from a previously-adopted elastic perfectly plastic schematization of the reinforced soil.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼