RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        An analytical expression for the dynamic active thrust from c-φ soil backfill on retaining walls with wall friction and adhesion

        Shukla, Sanjay K.,Bathurst, Richard J. Techno-Press 2012 Geomechanics & engineering Vol.4 No.3

        This paper presents the derivation of an analytical expression for the dynamic active thrust from c-${\phi}$ (c = cohesion, ${\phi}$ = angle of shearing resistance) soil backfill on rigid retaining walls with wall friction and adhesion. The derivation uses the pseudo-static approach considering tension cracks in the backfill, a uniform surcharge on the backfill, and horizontal and vertical seismic loadings. The development of an explicit analytical expression for the critical inclination of the failure plane within the soil backfill is described. It is shown that the analytical expression gives the same results for simpler special cases previously reported in the literature.

      • SCIESCOPUS

        Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests

        Zarnani, Saman,El-Emam, Magdi M.,Bathurst, Richard J. Techno-Press 2011 Geomechanics & engineering Vol.3 No.4

        The paper describes a simple numerical FLAC model that was developed to simulate the dynamic response of two instrumented reduced-scale model reinforced soil walls constructed on a 1-g shaking table. The models were 1 m high by 1.4 m wide by 2.4 m long and were constructed with a uniform size sand backfill, a polymeric geogrid reinforcement material with appropriately scaled stiffness, and a structural full-height rigid panel facing. The wall toe was constructed to simulate a perfectly hinged toe (i.e. toe allowed to rotate only) in one model and an idealized sliding toe (i.e. toe allowed to rotate and slide horizontally) in the other. Physical and numerical models were subjected to the same stepped amplitude sinusoidal base acceleration record. The material properties of the component materials (e.g. backfill and reinforcement) were determined from independent laboratory testing (reinforcement) and by back-fitting results of a numerical FLAC model for direct shear box testing to the corresponding physical test results. A simple elastic-plastic model with Mohr-Coulomb failure criterion for the sand was judged to give satisfactory agreement with measured wall results. The numerical results are also compared to closed-form solutions for reinforcement loads. In most cases predicted and closed-form solutions fall within the accuracy of measured loads based on ${\pm}1$ standard deviation applied to physical measurements. The paper summarizes important lessons learned and implications to the seismic design and performance of geosynthetic reinforced soil walls.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼