RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Seismic response of a rigid foundation embedded in a viscoelastic soil by taking into account the soil-foundation interaction

        Salah Messioud,Badreddine Sbartai,Daniel Dias 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.58 No.5

        This study analyses the seismic response of a three-dimensional (3-D) rigid massless square foundation resting or embedded in a viscoelastic soil limited by rigid bedrock. The foundation is subjected to harmonic oblique seismic waves P, SV, SH and R. The key step is the characterization of the soil-foundation interaction by computing the impedance matrix and the input motion matrix. A 3-D frequency boundary element method (BEM) in conjunction with the thin layer method (TLM) is adapted for the seismic analysis of the foundation. The dynamic response of the rigid foundation is solved from the wave equations by taking into account the soil-foundation interaction. The solution is formulated using the frequency BEM with the Green’s function obtained from the TLM. This approach has been applied to analyze the effect of soilstructure interaction on the seismic response of the foundation as a function of the kind of incident waves, the angles of incident waves, the wave’s frequencies and the embedding of foundation. The parametric results show that the non-vertical incident waves, the embedment of foundation, and the wave’s frequencies have important impact on the dynamic response of rigid foundations.

      • Dynamic impedance of a 3x3 pile-group system: Soil plasticity effects

        Kamal Gheddar,Badreddine Sbartai,Salah Messioud,Daniel Dias 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.83 No.3

        This paper considers dynamic impedance functions and presents a detailed analysis of the soil plasticity influence on the pile-group foundation dynamic response. A three-dimensional finite element model is proposed, and a calculation method considering the time domain is detailed for the nonlinear dynamic impedance functions. The soil mass is modeled as continuum elastoplastic solid using the Mohr-Coulomb shear failure criterion. The piles are modeled as continuum solids and the slab as a structural plate-type element. Quiet boundaries are implemented to avoid wave reflection on the boundaries. The model and method of analysis are validated by comparison with those published on literature. Numerical results are presented in terms of horizontal and vertical nonlinear dynamic impedances as a function of the shear soil parameters (cohesion and internal friction angle), pile spacing ratio and frequencies of the dynamic signal.

      • Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

        Maroua Lagaguine,Badreddine Sbartai 국제구조공학회 2023 Structural Engineering and Mechanics, An Int'l Jou Vol.87 No.2

        For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

      • SCIESCOPUS

        Reliability analysis of a mechanically stabilized earth wall using the surface response methodology optimized by a genetic algorithm

        Hamrouni, Adam,Dias, Daniel,Sbartai, Badreddine Techno-Press 2018 Geomechanics & engineering Vol.15 No.4

        A probabilistic study of a reinforced earth wall in a frictional soil using the surface response methodology (RSM) is presented. A deterministic model based on numerical simulations is used (Abdelouhab et al. 2011, 2012b) and the serviceability limit state (SLS) is considered in the analysis. The model computes the maximum horizontal displacement of the wall. The response surface methodology is utilized for the assessment of the Hasofer-Lind reliability index and is optimized by the use of a genetic algorithm. The soil friction angle and the unit weight are considered as random variables while studying the SLS. The assumption of non-normal distribution for the random variables has an important effect on the reliability index for the practical range of values of the wall horizontal displacement.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼