RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Buckling and bending of coated FG graphene-reinforced composite plates and shells

        Ahmed Amine Daikh,Amin Hamdi,Hani M. Ahmed,Mohamed S. Abdelwahed,Alaa A. Abdelrahman,Mohamed A. Eltaher Techno-Press 2023 Advances in nano research Vol.15 No.2

        The advancement of theoretical research has numerous challenges, particularly with regard to the modeling of structures, in contrast to experimental investigation of the mechanical behavior of complex systems. The main objective of this investigation is to provide an analytical analysis of the static problem of a new generation of composite structure, namely, functionally graded FG graphene reinforced composite GRC coated plates/shells. A complex power law function is used to define the material's graduation. Investigations are conducted on Hardcore and Softcore coated FG plates/shells. The virtual work approach is used to perform the equilibrium equations, which are then solved using the Galerkin technique to account for various boundary conditions. With reliable published articles, the presented solution is validated. The effects of hardcore and softcore distributions, gradation indexes, and boundary conditions on the buckling, bending deflection and stresses of FG GRC-coated shells are presented in detail. Obtained results and the developed procedure are supportive for design and manufacturing of FG-GRC coated plates/shells in several fields and industries e.g., aerospace, automotive, marine, and biomedical implants.

      • Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams

        Ahmed Drai,Ahmed Amine Daikh,Mohamed Oujedi Belarbi,Mohammed Sid Ahmed Houari,Benoumer Aour,Amin Hamdi,Mohamed A. Eltaher Techno-Press 2023 Advances in nano research Vol.14 No.3

        This work presents a modified analytical model for the bending behavior of axially functionally graded (AFG) carbon nanotubes reinforced composite (CNTRC) nanobeams. New higher order shear deformation beam theory is exploited to satisfy parabolic variation of shear through thickness direction and zero shears at the bottom and top surfaces.A Modified continuum nonlocal strain gradient theoryis employed to include the microstructure and the geometrical nano-size length scales. The extended rule of the mixture and the molecular dynamics simulations are exploited to evaluate the equivalent mechanical properties of FG-CNTRC beams. Carbon nanotubes reinforcements are distributed axially through the beam length direction with a new power graded function with two parameters. The equilibrium equations are derived with associated nonclassical boundary conditions, and Navier's procedure are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear, or sinusoidal mechanical loadings. Numerical results are carried out to investigate the impact of inhomogeneity parameters, geometrical parameters, loadings type, nonlocal and length scale parameters on deflections and stresses of the AFG CNTRC nanobeams. The proposed model can be used in the design and analysis of MEMS and NEMS systems fabricated from carbon nanotubes reinforced composite nanobeam.

      • KCI등재

        Experimental Measurement and Evaluation of the Noise Generated by Three Transmissions by Synchronous Belts of Type AT10, BAT10 and SFAT10

        Sidi Mohammed Merghache,Amine Hamdi,Mohamed El Amine Ghernaout 한국정밀공학회 2022 International Journal of Precision Engineering and Vol.23 No.1

        Synchronous belt drives combine the advantages of simple belt drives (flat, trapezoidal or ridged) due to their low weight, low maintenance, large linear speed ranges and high transmission ratios with the advantages of chains: absence sliding, synchronized transmission of speed, low tensioning, etc. Thanks to the toothing of the belt which enters the corresponding one of the synchronous pulleys, there is direct transmission of the power without sliding as between two gears. This article develops an experimental study which makes it possible to see the influence of the angular speed, the engine torque and the setting tension on the impact noise of the belt teeth on the pulley teeth during meshing and vibrations of the free strands of the belt. We have measured the noise generated by three transmissions by synchronous belts of type AT10, BAT10 and SFAT10.

      • Elastic shell model: Effect of Young's Modulus on the vibration of double-walled CNTs

        Hussain, Muzamal,Asghar, Sehar,Khadimallah, Mohamed Amine,Ayed, Hamdi,Banoqitah, Essam Mohammed,Loukil, Hassen,Ali, Imam,Mahmoud, S.R.,Tounsi, Abdelouahed Techno-Press 2022 Advances in concrete construction Vol.13 No.6

        In this paper, vibrational attributes of double-walled carbon nanotubes (CNTs) has been studied based upon nonlocal elastic shell theory. The implication of small scale is being perceived by establishing nonlocal Love shell model. The wave propagation approach has been operated to frame the governing equations as eigen value system. The comparison of local and nonlocal model has been overtly explored by means of scaling parameter. An appropriate selection of material properties and nonlocal parameter has been considered. The influence of changing mechanical parameter Young's modulus has been studied in detail. The dominance of end condition via nonlocal parameter is explained graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

      • Theoretical fabrication of Williamson nanoliquid over a stretchable surface

        Sharif, Humaira,Hussain, Muzamal,Khadimallah, Mohamed Amine,Ayed, Hamdi,Taj, Muhammad,Bhutto, Javed Khan,Mahmoud, S.R.,Iqbal, Zafer,Ahmad, Shabbir,Tounsi, Abdelouahed Techno-Press 2022 Advances in concrete construction Vol.14 No.2

        On the basis of fabrication, the utilization of nano material in numerous industrial and technological system, obtained the utmost significance in current decade. Therefore, the current investigation presents a theoretical disposition regarding the flow of electric conducting Williamson nanoliquid over a stretchable surface in the presence of the motile microorganism. The impact of thermal radiation and magnetic parameter are incorporated in the energy equation. The concentration field is modified by adding the influence of chemical reaction. Moreover, the splendid features of nanofluid are displayed by utilizing the thermophoresis and Brownian motion aspects. Compatible similarity transformation is imposed on the equations governing the problem to derive the dimensionless ordinary differential equations. The Homotopy analysis method has been implemented to find the analytic solution of the obtained differential equations. The implications of specific parameters on profiles of velocity, temperature, concentration and motile microorganism density are investigated graphically. Moreover, coefficient of skin friction, Nusselt number, Sherwood number and density of motile number are clarified in tabular forms. It is revealed that thermal radiation, thermophoresis and Brownian motion parameters are very effective for improvement of heat transfer. The reported investigation can be used in improving the heat transfer appliances and systems of solar energy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼