RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Bending analysis of power-law sandwich FGM beams under thermal conditions

        Garg, Aman,Belarbi, Mohamed-Ouejdi,Li, Li,Tounsi, Abdelouahed Techno-Press 2022 Advances in aircraft and spacecraft science Vol.9 No.3

        Broad writing on the examination of sandwich structures mirrors the significance of incorporating thermal loadings during their investigation stage. In the current work, an endeavor has been made to concentrate on sandwich FGM beams' bending behaving under thermal loadings utilizing shear deformation theory. Temperature-dependent material properties are used during the analysis. The formulation includes the transverse displacement field, which helps better predict the behavior of thick FGM beams. Three-different thermal profiles across the thickness of the beam are assumed during the analysis. The study has been carried out on both symmetric and unsymmetric sandwich FGM beams. It has been observed that the bending behavior of sandwich FGM beams is impacted by the temperature profile to which it is subjected. Power-law exponent and thickness of core also affect the behavior of the beam.

      • Free vibration analysis of power-law and sigmoidal sandwich FG plates using refined zigzag theory

        Aman Garg,Simmi Gupta,Hanuman D. Chalak,Mohamed-Ouejdi Belarbi,Abdelouahed Tounsi,Li Li,A.M. Zenkour Techno-Press 2023 Advances in materials research Vol.12 No.1

        Free vibration analysis of power law and sigmoidal sandwich plates made up of functionally graded materials (FGMs) has been carried out using finite element based higher-order zigzag theory. The present model satisfies all-important conditions such as transverse shear stress-free conditions at the plate's top and bottom surface along with continuity condition for transverse stresses at the interface. A Nine-noded C0 finite element having eleven degrees of freedom per node is used during the study. The present model is free from the requirement of any penalty function or post-processing technique and hence is computationally efficient. The present model's effectiveness is demonstrated by comparing the present results with available results in the literature. Several new results have been proposed in the present work, which will serve as a benchmark for future works. It has been observed that the material variation law, power-law exponent, skew angle, and boundary condition of the plate widely determines the free vibration behavior of sandwich functionally graded (FG) plate.

      • Comparative study on the bending of exponential and sigmoidal sandwich beams under thermal conditions

        Aman Garg,Mohamed-Ouejdi Belarbi,Li Li,Hanuman D. Chalak,Abdelouahed Tounsi 국제구조공학회 2023 Structural Engineering and Mechanics, An Int'l Jou Vol.85 No.2

        The bending analysis of sandwich functionally graded (FG) beams under temperature circumstances is performed in this article utilizing Navier's solution-based parabolic shear deformation theory. For the first time, a comparative study has been carried out between the exponential and sigmoidal sandwich FGM beams under thermal conditions. During this investigation, temperature-dependent material characteristics are postulated. Both symmetric and unsymmetric sandwich examples have been studied. The effect of gradation law, gradation coefficient, and thickness scheme on beam behavior has been thoroughly investigated. Three possible temperature combinations at the top and bottom surfaces of the beam are also investigated. Beams with a higher proportion of ceramic to metal are shown to be more resistant to thermal stresses than beams with a higher proportion of metal.

      • Bending analysis of power-law sandwich FGM beams under thermal conditions

        Garg, Aman,Belarbi, Mohamed-Ouejdi,Li, Li,Tounsi, Abdelouahed Techno-Press 2022 Advances in aircraft and spacecraft science Vol.9 No.3

        Broad writing on the examination of sandwich structures mirrors the significance of incorporating thermal loadings during their investigation stage. In the current work, an endeavor has been made to concentrate on sandwich FGM beams' bending behaving under thermal loadings utilizing shear deformation theory. Temperature-dependent material properties are used during the analysis. The formulation includes the transverse displacement field, which helps better predict the behavior of thick FGM beams. Three-different thermal profiles across the thickness of the beam are assumed during the analysis. The study has been carried out on both symmetric and unsymmetric sandwich FGM beams. It has been observed that the bending behavior of sandwich FGM beams is impacted by the temperature profile to which it is subjected. Power-law exponent and thickness of core also affect the behavior of the beam.

      • Finite element bending and buckling analysis of functionally graded carbon nanotubes-reinforced composite beam under arbitrary boundary conditions

        Mohamed-Ouejdi Belarbi,Sattar Jedari Salami,Aman Garg,Hicham Hirane,Daikh Ahmed Amine,Mohammed Sid Ahmed Houari 국제구조공학회 2022 Steel and Composite Structures, An International J Vol.44 No.4

        In the present paper, the static bending and buckling responses of functionally graded carbon nanotubes-reinforced composite (FG-CNTRC) beam under various boundary conditions are investigated within the framework of higher shear deformation theory. The significant feature of the proposed theory is that it provides an accurate parabolic distribution of transverse shear stress through the thickness satisfying the traction-free boundary conditions needless of any shear correction factor. Uniform (UD) and four graded distributions of CNTs which are FG-O, FG-X, FG- and FG-V are selected here for the analysis. The effective material properties of FG-CNTRC beams are estimated according to the rule of mixture. To model the FG-CNTRC beam realistically, an efficient Hermite–Lagrangian finite element formulation is successfully developed. The accuracy and efficiency of the present model are demonstrated by comparison with published benchmark results. Moreover, comprehensive numerical results are presented and discussed in detail to investigate the effects of CNTs volume fraction, distribution patterns of CNTs, boundary conditions, and length-to-thickness ratio on the bending and buckling responses of FGCNTRC beam. Several new referential results are also reported for the first time which will serve as a benchmark for future studies in a similar direction. It is concluded that the FG-X-CNTRC beam is the strongest beam that carries the lowest central deflection and is followed by the UD, V, Λ, and FG-O-CNTRC beam. Besides, the critical buckling load belonging to the FG-XCNTRC beam is the highest, followed by UD and FG-O.

      • Free vibration of functionally graded carbon nanotubes reinforced composite nanobeams

        Miloud Ladmek,Abdelkader Belkacem,Ahmed Amine Daikh,Aicha Bessaim,Aman Garg,Mohammed Sid Ahmed Houari,Mohamed-Ouejdi Belarbi,Abdelhak Ouldyerou Techno-Press 2023 Advances in materials research Vol.12 No.2

        This paper proposes an analytical method to investigate the free vibration behaviour of new functionally graded (FG) carbon nanotubes reinforced composite beams based on a higher-order shear deformation theory. Cosine functions represent the material gradation and material properties via the thickness. The kinematic relations of the beam are proposed according to trigonometric functions. The equilibrium equations are obtained using the virtual work principle and solved using Navier's method. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the vibration response of FG nanobeams to nonlocal length scale, strain gradient microstructure-scale, material distribution and geometry.

      • Shear correction factors of a new exponential functionally graded porous beams

        Mohammed Sid Ahmed Houari,Aicha Bessaim,Tarek Merzouki,Ahmed Amine Daikh,Aman Garg,Abdelouahed Tounsi,Mohamed A. Eltaher,Mohamed-Ouejdi Belarbi 국제구조공학회 2024 Structural Engineering and Mechanics, An Int'l Jou Vol.89 No.1

        This article introduces a novel analytical model for examining the impact of porosity on shear correction factors (SCFs) in functionally graded porous beams (FGPB). The study employs uneven and logarithmic-uneven modified porositydependent power-law functions, which are distributed throughout the thickness of the FGP beams. Additionally, a modified exponential-power law function is used to estimate the effective mechanical properties of functionally graded porous beams. The correction factor plays a crucial role in this analysis as it appears as a coefficient in the expression for the transverse shear stress resultant. It compensates for the assumption that the shear strain is uniform across the depth of the cross-section. By applying the energy equivalence principle, a general expression for static SCFs in FGPBs is derived. The resulting expression aligns with the findings obtained from Reissner’s analysis, particularly when transitioning from the two-dimensional case (plate) to the onedimensional case (beam). The article presents a convenient algebraic form of the solution and provides new case studies to demonstrate the practicality of the proposed formulation. Numerical results are also presented to illustrate the influence of porosity distribution on SCFs for different types of FGPBs. Furthermore, the article validates the numerical consistency of the mechanical property changes in FG beams without porosity and the SCF by comparing them with available results.

      • On the effect of porosity on the shear correction factors of functionally graded porous beams

        Ben Abdallah Medjdoubi,Mohammed Sid Ahmed Houari,Mohamed Sadoun,Aicha Bessaim,Ahmed Amine Daikh,Mohamed-Ouejdi Belarbi,Abdelhak Khechai,Aman Garg,Mofareh Hassan Ghazwani Techno-Press 2023 Coupled systems mechanics Vol.12 No.3

        This article presents a new analytical model to study the effect of porosity on the shear correction factors (SCFs) of functionally graded porous beams (FGPB). For this analysis, uneven and logarithmic-uneven porosity functions are adopted to be distributed through the thickness of the FGP beams. Critical to the application of this theory is a determination of the correction factor, which appears as a coefficient in the expression for the transverse shear stress resultant; to compensate for the assumption that the shear strain is uniform through the depth of the cross-section. Using the energy equivalence principle, a general expression is derived from the static SCFs in FGPB. The resulting expression is consistent with the variationally derived results of Reissner's analysis when the latter are reduced from the two-dimensional case (plate) to the one-dimensional one (beam). A convenient algebraic form of the solution is presented and new study cases are given to illustrate the applicability of the present formulation. Numerical results are presented to illustrate the effect of the porosity distribution on the (SCFs) for various FGPBs. Further, the law of changing the mechanical properties of FG beams without porosity and the SCFare numerically validated by comparison with some available results.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼