RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • First-Principles Modeling of Non-Covalent Interactions in Supramolecular Systems: The Role of Many-Body Effects

        Tkatchenko, Alexandre,Alfè,, Dario,Kim, Kwang S. American Chemical Society 2012 Journal of chemical theory and computation Vol.8 No.11

        <P>Supramolecular host–guest systems play an important role for a wide range of applications in chemistry and biology. The prediction of the stability of host–guest complexes represents a great challenge to first-principles calculations due to an interplay of a wide variety of covalent and noncovalent interactions in these systems. In particular, van der Waals (vdW) dispersion interactions frequently play a prominent role in determining the structure, stability, and function of supramolecular systems. On the basis of the widely used benchmark case of the <I>buckyball catcher</I> complex (C<SUB>60</SUB>@C<SUB>60</SUB>H<SUB>28</SUB>), we assess the feasibility of computing the binding energy of supramolecular host–guest complexes from first principles. Large-scale diffusion Monte Carlo (DMC) calculations are carried out to accurately determine the binding energy for the C<SUB>60</SUB>@C<SUB>60</SUB>H<SUB>28</SUB> complex (26 ± 2 kcal/mol). On the basis of the DMC reference, we assess the accuracy of widely used and efficient density-functional theory (DFT) methods with dispersion interactions. The inclusion of vdW dispersion interactions in DFT leads to a large stabilization of the C<SUB>60</SUB>@C<SUB>60</SUB>H<SUB>28</SUB> complex. However, DFT methods including pairwise vdW interactions overestimate the stability of this complex by 9–17 kcal/mol compared to the DMC reference and the extrapolated experimental data. A significant part of this overestimation (9 kcal/mol) stems from the lack of dynamical dielectric screening effects in the description of the molecular polarizability in pairwise dispersion energy approaches. The remaining overstabilization arises from the isotropic treatment of atomic polarizability tensors and the lack of many-body dispersion interactions. A further assessment of a different supramolecular system – glycine anhydride interacting with an amide macrocycle – demonstrates that both the dynamical screening and the many-body dispersion energy are complex contributions that are very sensitive to the underlying molecular geometry and type of bonding. We discuss the required improvements in theoretical methods for achieving “chemical accuracy” in the first-principles modeling of supramolecular systems.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼