RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An investigation into the efficiency of biocides in controlling algal biofouling in seawater industrial cooling towers

        Al-Bloushi Mohammed,Saththasivam Jayaprakash,Jeong Sanghyun,Al-Refaie Abdullah,Raju S. Arun Kumar,Kim Choon NG,Amy L. Gary,Leiknes TorOve 대한환경공학회 2021 Environmental Engineering Research Vol.26 No.6

        Biofouling in the open recirculating cooling water systems may cause biological corrosion, which can reduce the performance, increase the energy consumption and lower heat exchange resulting in reduced efficiency of the cooling tower (CT). Seawater CTs are prone to bio-fouled due to the presences of organic and inorganic compounds which act as nourishment for various microorganisms like (algae, fungi, and bacteria) for their growth under certain environmental conditions. The most commonly being used method to control the biofouling in CT is by addition of biocides such as chlorination. In this study, diatom and green algae were added to the CT basin and its viability was monitored in the recirculating cooling seawater loop as well as in the CT basin. Three different types of oxidizing biocides, namely chlorine, chlorine dioxide (Chlorine dioxide) and ozone, were tested by continuous addition in pilot-scale seawater CTs and it was operated continuously for 60 d. The results showed that all biocides were effective in keeping the biological growth to the minimum regardless of algal addition. Amongst the biocides, ozone could reduce 99% of total live cells of bacteria and algae, followed by Chlorine dioxide at 97%, while the conventional chlorine showed only 89% reduction in the bioactivities.

      • KCI등재

        An investigation into the efficiency of biocides in controlling algal biofouling in seawater industrial cooling towers

        Al-Bloushi Mohammed,Saththasivam Jayaprakash,Jeong Sanghyun,Al-Refaie Abdullah,Raju S. Arun Kumar1,Choon NG Kim,Amy L. Gary,Leiknes TorOve 대한환경공학회 2021 Environmental Engineering Research Vol.26 No.6

        Biofouling in the open recirculating cooling water systems may cause biological corrosion, which can reduce the performance, increase the energy consumption and lower heat exchange resulting in reduced efficiency of the cooling tower (CT). Seawater CTs are prone to bio-fouled due to the presences of organic and inorganic compounds which act as nourishment for various microorganisms like (algae, fungi, and bacteria) for their growth under certain environmental conditions. The most commonly being used method to control the biofouling in CT is by addition of biocides such as chlorination. In this study, diatom and green algae were added to the CT basin and its viability was monitored in the recirculating cooling seawater loop as well as in the CT basin. Three different types of oxidizing biocides, namely chlorine, chlorine dioxide (Chlorine dioxide) and ozone, were tested by continuous addition in pilot-scale seawater CTs and it was operated continuously for 60 d. The results showed that all biocides were effective in keeping the biological growth to the minimum regardless of algal addition. Amongst the biocides, ozone could reduce 99% of total live cells of bacteria and algae, followed by Chlorine dioxide at 97%, while the conventional chlorine showed only 89% reduction in the bioactivities.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼