RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Utilization of black mustard husk ash for adsorption of fluoride from water

        Akash Sitaram Jadhav,Madhukar Vinayak Jadhav 한국화학공학회 2021 Korean Journal of Chemical Engineering Vol.38 No.10

        Fluoride removal systems have been established to curb the health hazards from fluoride. However, these techniques are not feasible in rural communities. Therefore, use of agricultural wastes as adsorbing material for fluoride removal can be fruitful to rural areas. A study of the influence of constraints like pH, adsorbent dosage, contact period and stirring rate on efficiency of fluoride removal was conducted using ash obtained from black mustard husk as an adsorptive material. Batch study was carried out to study the efficiency of the adsorbent for defluoridation. Removal efficiency of up to 84 percent was observed for the fluoride uptake using black mustard husk fly ash (BMHFA). Adsorbent dosage of 2 g, pH value of 2, contact time of 150 min and stirring rate of 200 rpm were found to be the optimum process parameter values. Adsorption models like Freundlich, Temkin and Langmuir models were used to validate the results. Langmuir model was seen best fitting with the results having an R2 value equal to 0.96 and indicating a homogeneous monolayer surface assimilation. Pseudo-first-order kinetics, pseudo-second-order kinetic modelling and intra-particle diffusion were studied. The kinetic models showed the prominent influence of physisorption in the adsorption process. A thermodynamic study of the adsorption phenomenon was conducted and it was found that the nature of sorption process was spontaneous and endothermic. The adsorbent was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The adsorbent was found to be efficient in fluoride sorption when tested on real water samples. Regeneration study showed good reusability of the spent adsorbent. This study provides a good prospective and stimulating work for the researchers working in this field.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼