RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • High-density single-nucleotide polymorphism maps of the human genome

        Miller, Raymond D.,Phillips, Michael S.,Jo, Inho,Donaldson, Miriam A.,Studebaker, Joel F.,Addleman, Nicholas,Alfisi, Steven V.,Ankener, Wendy M.,Bhatti, Hamid A.,Callahan, Chad E.,Carey, Benjamin J.,C Elsevier 2005 Genomics Vol.86 No.2

        <P><B>Abstract</B></P><P>Here we report a large, extensively characterized set of single-nucleotide polymorphisms (SNPs) covering the human genome. We determined the allele frequencies of 55,018 SNPs in African Americans, Asians (Japanese–Chinese), and European Americans as part of The SNP Consortium's Allele Frequency Project. A subset of 8333 SNPs was also characterized in Koreans. Because these SNPs were ascertained in the same way, the data set is particularly useful for modeling. Our results document that much genetic variation is shared among populations. For autosomes, some 44% of these SNPs have a minor allele frequency ≥10% in each population, and the average allele frequency differences between populations with different continental origins are less than 19%. However, the several percentage point allele frequency differences among the closely related Korean, Japanese, and Chinese populations suggest caution in using mixtures of well-established populations for case–control genetic studies of complex traits. We estimate that ∼7% of these SNPs are private SNPs with minor allele frequencies <1%. A useful set of characterized SNPs with large allele frequency differences between populations (>60%) can be used for admixture studies. High-density maps of high-quality, characterized SNPs produced by this project are freely available.</P>

      • Magnetic mesoporous materials for removal of environmental wastes

        Kim, Byoung Chan,Lee, Jinwoo,Um, Wooyong,Kim, Jaeyun,Joo, Jin,Lee, Jin Hyung,Kwak, Ja Hun,Kim, Jae Hyun,Lee, Changha,Lee, Hongshin,Addleman, R. Shane,Hyeon, Taeghwan,Gu, Man Bock,Kim, Jungbae Elsevier 2011 Journal of hazardous materials Vol.192 No.3

        <P><B>Highlights</B></P><P>• Iron oxide particle embedded mesoporous silica and carbon are synthesized. • Both mesoporous materials are separated easily under aqueous condition using magnet. • Mercury or fluorescein is removed by using magnetic mesoporous material. • Tyrosinase is immobilized in magnetic mesoporous silica and reused after reaction. • Magnetic mesoporous materials are applicable to removal of environmental wastes.</P> <P><B>Abstract</B></P><P>We have synthesized two different magnetic mesoporous materials that can be easily separated from aqueous solutions by applying a magnetic field. Synthesized magnetic mesoporous materials, Mag-SBA-15 (magnetic ordered mesoporous silica) and Mag-OMC (magnetic ordered mesoporous carbon), have a high loading capacity of contaminants due to high surface area of the supports and high magnetic activity due to the embedded iron oxide particles. Application of surface-modified Mag-SBA-15 was investigated for the collection of mercury from water. The mercury adsorption using Mag-SBA-15 was rapid during the initial contact time and reached a steady-state condition, with an uptake of approximately 97% after 7h. Application of Mag-OMC for collection of organics from water, using fluorescein as an easily trackable model analyte, was explored. The fluorescein was absorbed into Mag-OMC within minutes and the fluorescent intensity of solution was completely disappeared after an hour. In another application, Mag-SBA-15 was used as a host of tyrosinase, and employed as recyclable catalytic scaffolds for tyrosinase-catalyzed biodegradation of catechol. Crosslinked tyrosinase in Mag-SBA-15, prepared in a two step process of tyrosinase adsorption and crosslinking, was stable enough for catechol degradation with no serious loss of enzyme activity. Considering these results of cleaning up water from toxic inorganic and organic contaminants, magnetic mesoporous materials have a great potential to be employed for the removal of environmental contaminants and potentially for the application in large-scale wastewater treatment plants.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼