RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Electrocatalytic reduction of 2,4 dinitrophenol on carbon black-modified glassy carbon electrode and its selective recognition in cold beverages

        Dinesh Bose,Aadhav Anantharamakrishnan,Devi K. S. Shalini,Krishnan Uma Maheswari 한국탄소학회 2022 Carbon Letters Vol.32 No.4

        Nitrophenol sensors have garnered interest in pharmaceuticals, agriculture, environment safety and explosives. Various methods have been proposed to detect 4-nitrophenol, but nitrophenol isomers such as 2,4-dinitrophenol (DNP) and 2,4,6-trinitrophenol have been comparatively less studied. For the first time, the present work explores graphitic nanocarbon, i.e., carbon black (CB) interface for sensing of DNP. Two reduction potentials were noted at − 0.48 and − 0.64 V for o-NO2 and p-NO2 moieties, respectively, at CB/GCE. At the same time, bare GCE (glassy carbon electrode) shows a single reduction potential at − 0.7 V. The electrocatalytic effect and adsorption ability of the interface was studied from the DNP concentration effect. Scan rate and pH studies suggest that the CB acquires four electrons for NO2 reduction by the diffusion phenomenon. A broad detection range of 10–250 µM DNP with a very low detection limit of 0.13 (o-form) and 0.15 µM (p-form) was achieved using the CB interface. The real-time applicability of the fabricated sensor was evaluated using commercially available beverages with excellent recovery values. The stability, repeatability and reproducibility of the CB interface were successfully confirmed. Comparison of the sensing parameters of the developed sensor with those reported in literature reveals excellent detection limit and response time for the CB-interfaced DNP sensor, indicating its potential for environmental and commercial applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼