RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Gastroprotective and gastric motility benefits of AD-lico/Healthy Gut™ Glycyrrhiza inflata extract

        ALISTARE ROBERT SADR,조제영,허성오,권혁세 한국통합생물학회 2017 Animal cells and systems Vol.21 No.4

        The aim of this study was to evaluate in vivo both the anti-Helicobacter and the gastric-relaxing effects of AD-lico/Healthy Gut™ in rat models. AD-lico/Healthy Gut™ is a specially prepared commercial formulation of Glycyrrhiza inflata extract that is under clinical development for indications of gastrointestinal disease and inflammatory bowel disease. In the current study, the oral administration of AD-lico/Healthy Gut™ significantly reduced mucosal damage from Helicobacter pylori in rats and decreased the expression of the inflammatory markers iNOS and COX-2 in the test cells. AD-lico/Healthy Gut™ also reduced mucosal damage caused by water immersion stress in rats. The accelerated gastric emptying in normal rats was also seen with ADlico/ Healthy Gut™, providing relief in gastric relaxation in the test animals. The special formulation of AD-lico/Healthy Gut™ with reduced levels of component glycyrrhizin also has benefits in minimizing the potential side effects attributed to glycyrrhizin seen with similar Glycyrrhiza extracts in terms of induction of hypokalemia and muscle weakness. The preparation has a relatively high phenolic compound content relative to other methods of preparation and is indicative of lower glycyrrhizin levels. These results suggest that AD-lico/Healthy Gut™ may provide the necessary relief from a number of stomach discomfort issues faced by a large population of people.

      • KCI등재

        Farnesylation-defective Rheb Increases Axonal Length Independently of mTORC1 Activity in Embryonic Primary Neurons

        최승혁,ALISTARE ROBERT SADR,강지은,류재련,김준환,선웅,허성오 한국뇌신경과학회 2019 Experimental Neurobiology Vol.28 No.2

        Rheb (Ras homolog enriched in the brain) is a small GTPase protein that plays an important role in cell signaling for development of the neocortex through modulation of mTORC1 (mammalian-target-of-rapamycin-complex-1) activity. mTORC1 is known to control various biological processes including axonal growth in forming complexes at the lysosomal membrane compartment. As such, anchoring of Rheb on the lysosomal membrane via the farnesylation of Rheb at its cysteine residue (C180) is required for its promotion of mTOR activity. To test the significance of Rheb farnesylation, we overexpressed a farnesylation mutant form of Rheb, Rheb C180S, in primary rat hippocampal neurons and also in mouse embryonic neurons using in utero electroporation. Interestingly, we found that Rheb C180S maintained promotional effect of axonal elongation similar to the wild-type Rheb in both test systems. On the other hand, Rheb C180S failed to exhibit the multiple axon-promoting effect which is found in wild-type Rheb. The levels of phospho-4EBP1, a downstream target of mTORC1, were surprisingly increased in Rheb C180S transfected neurons, despite the levels of phosphorylated mTOR being significantly decreased compared to control vector transfectants. A specific mTORC1 inhibitor, rapamycin, also could not completely abolish axon elongation characteristics of Rheb C180S in transfected cells. Our data suggests that Rheb in a non-membrane compartment can promote the axonal elongation via phosphorylation of 4EBP1 and through an mTORC1-independent pathway.

      • KCI등재

        Augmented reduction in colonic inflammatory markers of dextran sulfate sodiuminduced colitis with a combination of 5-aminosalicylic acid and AD-lico™ from Glycyrrhiza inflata

        조재영,권혁세,허성오,ALISTARE ROBERT SADR 한국통합생물학회 2018 Animal cells and systems Vol.22 No.3

        The primary aim of this study was to determine whether the oral administration of AD-lico™, a functional extract from Glycyrrhiza inflata in combination with 5-aminosalicylic acid (5-ASA) could ameliorate the inflammatory symptoms in dextran sulfate sodium (DSS)-induced colitis in rodents. This DSS rodent model is used to study drug candidates for colitis, as part of the spectrum of diseases falling under the inflammatory bowel disease (IBD) category. Here, with oral AD-lico™ administration, there was a substantial disruption of the colonic architectural changes due to DSS and a significant reduction in colonic myeloperoxidase (MPO) activity, a marker of colitis. In the same samples, there were also reduced levels of colonic and serum IL-6 in the oral AD-lico™ treated rats. This study also addressed the possible mechanisms for ADlico ™ mediated changes on colonic inflammation markers. These included the observations that AD-lico™ dampened the IL-6 proinflammatory-signaling pathway in THP-1 human monocytic cells and reduced the TNFα-mediated upregulation of surface adhesion molecule ICAM-1 in human umbilical vein endothelial cells (HUVECs). Finally, it was shown that AD-lico™ could be combined with 5-ASA in reducing the inflammatory markers for colorectal sites affected by colitis, a first study of its kind for a combination therapy.

      • KCI등재

        RNA Binding Protein Rbms1 Enables Neuronal Differentiation and Radial Migration during Neocortical Development by Binding and Stabilizing the RNA Message for Efr3a

        Khadija Habib,Kausik Bishayee,강지은,ALISTARE ROBERT SADR,Sung-Oh Huh 한국분자세포생물학회 2022 Molecules and cells Vol.45 No.8

        Various RNA-binding proteins (RBPs) are key components in RNA metabolism and contribute to several neurodevelop­mental disorders. To date, only a few of such RBPs have been characterized for their roles in neocortex development. Here, we show that the RBP, Rbms1, is required for radial migration, polarization and differentiation of neuronal progenitors to neurons in the neocortex development. Rbms1 expression is highest in the early development in the developing cortex, with its expression gradually diminishing from embryonic day 13.5 (E13.5) to postnatal day 0 (P0). From in utero electroporation (IUE) experiments when Rbms1 levels are knocked down in neuronal progenitors, their transition from multipolar to bipolar state is delayed and this is accompanied by a delay in radial migration of these cells. Reduced Rbms1 levels in vivo also reduces differentiation as evidenced by a decrease in levels of several differentiation markers, meanwhile having no significant effects on proliferation and cell cycle rates of these cells. As an RNA binding protein, we profiled the RNA binders of Rbms1 by a cross-linked-RIP sequencing assay, followed by quantitative real-time polymerase chain reaction verification and showed that Rbms1 binds and stabilizes the mRNA for Efr3a, a signaling adapter protein. We also demonstrate that ectopic Efr3a can recover the cells from the migration defects due to loss of Rbms1, both in vivo and in vitro migration assays with cultured cells. These imply that one of the functions of Rbms1 involves the stabilization of Efr3a RNA message, required for migration and maturation of neuronal progenitors in radial migration in the developing neocortex.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼