RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Biological Characterization of Epigallocatechin Gallate Complex with Different Steviol Glucosides

        탄한,Nahyun M. Kim,염수청,한송희,곽소형,김성보,박준성,목일균,김도만 한국생물공학회 2017 Biotechnology and Bioprocess Engineering Vol.22 No.5

        Steviol glucosides (SGs) such as rubusoside (Ru), stevioside (Ste), rebaudioside A (RebA) and stevioside glucosides (SG) are herbal tea sweeteners that enhance the solubility and stability of a number of pharmaceutically important compounds. The complex of epigallocatechin gallate (EGCG) with 10% (w/v) each Ru, Ste, RebA or SG enhanced the water solubility of EGCG over 15 times to 345, 312, 341, or 320 mg/mL, respectively. The 2,2- diphenyl-1-picrylhydrazyl radical scavenging (SC50) activities of EGCG, EGCG-Ru, EGCG-Ste, EGCG-RebA, and EGCGSG in water were 5.88, 6.03, 6.52, 4.89, and 4.23 μg/mL, respectively. EGCGs complexed with different SGs maintained inhibitory activities against human intestinal maltase, human pancreatic α-amylase, and the growth of Streptococcus mutans, Helicobacter pylori, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Clostridium difficile. In glucose tolerance test using C57BL/6 mice, plasma glucose levels in mice treated with EGCG or EGCG-Ste complex were decreased by 9.34%, which was 31.08% lower than those treated with maltose. The efficient and cost-effective EGCG-SGs production method might be applicable to produce water soluble bioactive nutraceuticals in large scale.

      • KCI등재

        Synthesis of Oligosaccharide-containing Orange Juice Using Glucansucrase

        탄한,서예슬,조재영,이선,Ghahyun J. Kim,윤종원,안승현,황경환,박준승,장태수,김도만 한국생물공학회 2015 Biotechnology and Bioprocess Engineering Vol.20 No.3

        Orange juice is a well-accepted fruit juice, and is a natural source of various vitamins, especially vitamin C, as well as sugar, potassium, thiamine, folate, flavonoids and antioxidants. The respective fructose, glucose, and sucrose concentrations were 9.3, 22.9, and 48.1 g/L in the original orange juice used in this study, and 183.4, 170.1, and 142.8 g/L after concentration. Over 97% of the sucrose in the juice was enzymatically converted to glucooligosaccharides upon addition of 3 U/mL dextransucrase, prepared from Leuconostoc mesenteroides 512FMCM, at 16oC. The synthesized oligosaccharides comprised 35.0% of the total saccharides in the concentrated juice and 31.7% in the original juice. The optimum conditions for oligosaccharide synthesis using the concentrated juice were 35.2 × 10−1 U/mL dextransucrase and 1% Ca(OH)2. The calories in the original and modified concentrated orange juices were 325.4 and 246.7 kcal/L, respectively. Compared to the original concentrated juice, the enzyme-modified concentrated juice prevented the formation of 62.7% of the insoluble glucan resulting from addition of mutansucrase, produced by Streptococcus mutans.

      • KCI등재

        Glucooligosaccharide Production by Leuconostoc mesenteroides Fermentation with Efficient pH Control, using a Calcium Hydroxidesucrose Solution

        이선,탄한,조재영,김지연,문영환,염수청,김근중,김도만 한국생물공학회 2016 Biotechnology and Bioprocess Engineering Vol.21 No.1

        95.3% of the sucrose in a feed batch fermentation (300 g/L) was hydrolyzed by Leuconostoc mesenteroides subp. mesenteroides NRRL B-23188 glucansucrase. Further, the glucose of sucrose formed glucooligosaccharides (GOS) of degree of polymerization (DP) over 2, together with 91.6% of the maltose (200 g/L). Lime saccharate (lime sucrate) was used to control the pH during fermentation. The GOS products had DP between 2 and 7. When Streptococcus mutans mutansucrase (0.1 U/mL) reacted with 0.1% sucrose, addition of 0.1 ~ 10% GOS to the mutansucrase reaction digest resulted in a 56 ~ 90% reduction of mutan formation. GOS also reduced E. coli (72.2%) and Salmonella sp. (over 40.0%) growth, when 2.5% GOS was used as a single carbon source, compared to growth using glucose. The calculated glycemic index and glycemic load of GOS was 8 and 1, respectively, based on a 10 g carbohydrate serving. GOS was calculated to have 2.43 kcal/g. After a glucose tolerance test was performed using C57BL/6 mice, we found that mice treated with GOS showed a 59.4% lower increase in plasma glucose than those treated with maltose.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼