RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Molecular characterization of SMILE as a novel corepressor of nuclear receptors

        Xie, Yuan-Bin,Nedumaran, Balachandar,Choi, Hueng-Sik Oxford University Press 2009 Nucleic acids research Vol.37 No.12

        <P>SMILE (small heterodimer partner interacting leucine zipper protein) has been identified as a coregulator in ER signaling. In this study, we have examined the effects of SMILE on other NRs (nuclear receptors). SMILE inhibits GR, CAR and HNF4α-mediated transactivation. Knockdown of SMILE gene expression increases the transactivation of the NRs. SMILE interacts with GR, CAR and HNF4α <I>in vitro</I> and <I>in vivo</I>. SMILE and these NRs colocalize in the nucleus. SMILE binds to the ligand-binding domain or AF2 domain of the NRs. Competitions between SMILE and the coactivators GRIP1 or PGC-1α have been demonstrated <I>in vitro</I> and <I>in vivo</I>. Furthermore, an intrinsic repressive activity of SMILE is observed in Gal4-fusion system, and the intrinsic repressive domain is mapped to the C-terminus of SMILE, spanning residues 203–354. Moreover, SMILE interacts with specific HDACs (histone deacetylases) and SMILE-mediated repression is released by HDAC inhibitor trichostatin A, in a NR-specific manner. Finally, ChIP (chromatin immunoprecipitation) assays reveal that SMILE associates with the NRs on the target gene promoters. Adenoviral overexpression of SMILE represses GR-, CAR- and HNF4α-mediated target gene expression. Overall, these results suggest that SMILE functions as a novel corepressor of NRs via competition with coactivators and the recruitment of HDACs.</P>

      • SCISCIESCOPUS

        Transcriptional corepressor SMILE recruits SIRT1 to inhibit nuclear receptor estrogen receptor-related receptor gamma transactivation.

        Xie, Yuan-Bin,Park, Jeong-Hoh,Kim, Don-Kyu,Hwang, Jung Hwan,Oh, Sangmi,Park, Seung Bum,Shong, Minho,Lee, In-Kyu,Choi, Hueng-Sik American Society for Biochemistry and Molecular Bi 2009 The Journal of biological chemistry Vol.284 No.42

        <P>SMILE (small heterodimer partner interacting leucine zipper protein) has been identified as a corepressor of the glucocorticoid receptor, constitutive androstane receptor, and hepatocyte nuclear factor 4alpha. Here we show that SMILE also represses estrogen receptor-related receptor gamma (ERRgamma) transactivation. Knockdown of SMILE gene expression increases ERRgamma activity. SMILE directly interacts with ERRgamma in vitro and in vivo. Domain mapping analysis showed that SMILE binds to the AF2 domain of ERRgamma. SMILE represses ERRgamma transactivation partially through competition with coactivators PGC-1alpha, PGC-1beta, and GRIP1. Interestingly, the repression of SMILE on ERRgamma is released by SIRT1 inhibitors, a catalytically inactive SIRT1 mutant, and SIRT1 small interfering RNA but not by histone protein deacetylase inhibitor. In vivo glutathione S-transferase pulldown and coimmunoprecipitation assays validated that SMILE physically interacts with SIRT1. Furthermore, the ERRgamma inverse agonist GSK5182 enhances the interaction of SMILE with ERRgamma and SMILE-mediated repression. Knockdown of SMILE or SIRT1 blocks the repressive effect of GSK5182. Moreover, chromatin immunoprecipitation assays revealed that GSK5182 augments the association of SMILE and SIRT1 on the promoter of the ERRgamma target PDK4. GSK5182 and adenoviral overexpression of SMILE cooperate to repress ERRgamma-induced PDK4 gene expression, and this repression is released by overexpression of a catalytically defective SIRT1 mutant. Finally, we demonstrated that ERRgamma regulates SMILE gene expression, which in turn inhibits ERRgamma. Overall, these findings implicate SMILE as a novel corepressor of ERRgamma and recruitment of SIRT1 as a novel repressive mechanism for SMILE and ERRgamma inverse agonist.</P>

      • KCI등재

        Diversity Analysis of Burkholderia cepacia Complex in the Water Bodies of West Lake, Hangzhou, China

        Yuan Fang,Guan-lin Xie,Miao-miao Lou,Bin Li,Ibrahim Muhammad 한국미생물학회 2011 The journal of microbiology Vol.49 No.2

        A survey of Burkholderia cepacia complex (Bcc) species was conducted in water bodies of West Lake in China. A total of 670 bacterial isolates were recovered on selective media. Out of them, 39.6% (265 isolates)were assigned to the following species: Burkholderia multivorans, Burkholderia cenocepacia recA lineage IIIA,IIIB, Burkholderia stabilis, Burkholderia vietnamiensis, and Burkholderia seminalis while B. cenocepacia is documented as a dominant Bcc species in water of West Lake. In addition, all Bcc isolates tested were PCR negative for the cblA and esmR transmissibility marker genes except B. cenocepacia IIIB A8 which was positive for esmR genelater. The present study raises great concerns on the role of West Lake as a “reservoir” for potential Bcc pathogenic strains.

      • KCI등재

        Bacterial Fruit Rot of Apricot Caused by Burkholderia cepacia in China

        Yuan Fang,Bin Li,Fang Wang,Baoping Liu,Zhiyi Wu,Ting Su,Wen Qiu,Guanlin Xie 한국식물병리학회 2009 Plant Pathology Journal Vol.25 No.4

        An unreported disease of apricot was observed in orchards in Zhejiang province, China. Symptoms started as water soaked lesions on the fruit surface. Later, water-soaked areas developed and spread to the entire fruit, resulting in soft rot of the whole fruit. The causal organism isolated from symptomatic fruits was identified as Burkholderia cepacia based on its biochemical and physiological characteristics and confirmed by the cellular fatty acid composition and Biolog data as well as 16S rRNA gene sequence analysis. The bacterial isolates caused similar symptoms when inoculated onto fruits of apricot. In addition, European plum, Japanese plum, nectarine and kiwifruit were susceptible to the B. cepacia pathogen. However, the B. cepacia pathogen failed to cause any visible symptoms when it was inoculated onto 16 other fruits. This is the first report of a bacterial disease of apricot caused by B. cepacia in China.

      • KCI등재

        Molecular Characterization of Burkholderia cepacia Complex Isolates Causing Bacterial Fruit Rot of Apricot

        Bin Li,Yuan Fang,Guoqing Zhang,Rongrong Yu,Miaomiao Lou,Guanlin Xie,Yanli Wang,Guochang Sun 한국식물병리학회 2010 Plant Pathology Journal Vol.26 No.3

        The Burkholderia cepacia complex isolates causing bacterial fruit rot of apricot were characterized by speciesspecific PCR tests, recA-HaeIII restriction fragment length polymorphism (RFLP) assays, rep-PCR genomic fingerprinting, recA gene sequencing, and multilocus sequence typing (MLST) analysis. Results indicated that the isolates Bca 0901 and Bca 0902 gave positive amplifications with primers specific for B. vietnamiensis while the two bacterial isolates showed different recARFLP and rep-PCR profiles from those of B. vietnamiensis strains. In addition, the two bacterial isolates had a higher proteolytic activity compared with that of the non-pathogenic B. vietnamiensis strains while no cblA and esmR marker genes were detected for the two bacterial isolates and B. vietnamiensis strains. The two bacterial isolates were identified as Burkholderia seminalis based on recA gene sequence analysis and MLST analysis. Overall, this is the first characterization of B. seminalis that cause bacterial fruit rot of apricot.

      • KCI등재

        Effect of Chitosan Solution on the Inhibition of Pseudomonas fluorescens Causing Bacterial Head Rot of Broccoli

        Bin Li,Baoping Liu,Ting Su,Yuan Fang,Guanlin Xie,Guofen Wang,Yanli Wang,Guochang Sun 한국식물병리학회 2010 Plant Pathology Journal Vol.26 No.2

        The in vitro antibacterial properties of two kinds of chitosan solutions and their effect in protection of broccoli from bacterial head rot disease were evaluated. Results showed that the two kinds of chitosan solution at different concentrations exhibited strong antibacterial activity against Pseudomonas fluorescens. However, the antibacterial activity of chitosan A solution increased with the increase of chitosan concentration up to 0.10mg/ml while the antibacterial activity of chitosan B solution increased with the increase of chitosan concentration up to 0.05 mg/ml. In addition, the antibacterial activity of chitosan A and chitosan B solution of 0.10mg/ml increased with the incubation time within 12 h and 24 h, respectively. The disease incidence and the lesion diameter of broccoli inoculated with P. fluorescens were significantly reduced when plants were either pretreated or post-treated with six different combinations of chitosan solutions. Overall, the results indicated that the two kinds of chitosan solutions had a potential in controlling bacterial head rot of broccoli.

      • KCI등재

        First Report on Bacterial Heart Rot of Garlic Caused by Pseudomonas fluorescens in China

        Bin Li,Rong Rong Yu,Shan Hong Yu,Wen Qiu,Yuan Fang,Guan Lin Xie 한국식물병리학회 2009 Plant Pathology Journal Vol.25 No.1

        An unreported disease of garlic was observed in commercial fields in Jiangsu province, China. The symptoms started as water soaked lesions at the base of the leaves. Later, water-soaked areas developed on stems and spread to the internal tissues, followed by yellowing and necrosis along leaf edges and soft rot of the stems. The causal organism isolated from symptomatic plants was identified as Pseudomonas fluorescens based on its biochemical and physiological characteristics and confirmed by the cellular fatty acid composition and Biolog data as well as 16S rRNA gene sequence analysis. The bacterial isolates caused similar symptoms when inoculated onto garlic plants. In addition, leek and shallot were susceptible to the P. fluorescens pathogen. However, the P. fluorescens pathogen failed to cause any symptoms when it was inoculated onto 15 other plants. This is the first report of a bacterial disease of garlic caused by P. fluorescens in China.

      • SCIEKCI등재

        First Report on Bacterial Heart Rot of Garlic Caused by Pseudomonas fluorescens in China

        Li, Bin,Yu, Rong Rong,Yu, Shan Hong,Qiu, Wen,Fang, Yuan,Xie, Guan Lin The Korean Society of Plant Pathology 2009 Plant Pathology Journal Vol.25 No.1

        An unreported disease of garlic was observed in commercial fields in Jiangsu province, China. The symptoms started as water soaked lesions at the base of the leaves. Later, water-soaked areas developed on stems and spread to the internal tissues, followed by yellowing and necrosis along leaf edges and soft rot of the stems. The causal organism isolated from symptomatic plants was identified as Pseudomonas fluorescens based on its biochemical and physiological characteristics and confirmed by the cellular fatty acid composition and Biolog data as well as 168 rRNA gene sequence analysis. The bacterial isolates caused similar symptoms when inoculated onto garlic plants. In addition, leek and shallot were susceptible to the P. fluorescens pathogen. However, the P. fluorescens pathogen failed to cause any symptoms when it was inoculated onto 15 other plants. This is the first report of a bacterial disease of garlic caused by P. fluorescens in China.

      • SCIEKCI등재

        Bacterial Fruit Rot of Apricot Caused by Burkholderia cepacia in China

        Fang, Yuan,Li, Bin,Wang, Fang,Liu, Baoping,Wu, Zhiyi,Su, Ting,Qiu, Wen,Xie, Guanlin The Korean Society of Plant Pathology 2009 Plant Pathology Journal Vol.25 No.4

        An unreported disease of apricot was observed in orchards in Zhejiang province, China. Symptoms started as water soaked lesions on the fruit surface. Later, water-soaked areas developed and spread to the entire fruit, resulting in soft rot of the whole fruit. The causal organism isolated from symptomatic fruits was identified as Burkholderia cepacia based on its biochemical and physiological characteristics and confirmed by the cellular fatty acid composition and Biolog data as well as 16S rRNA gene sequence analysis. The bacterial isolates caused similar symptoms when inoculated onto fruits of apricot. In addition, European plum, Japanese plum, nectarine and kiwifruit were susceptible to the B. cepacia pathogen. However, the B. cepacia pathogen failed to cause any visible symptoms when it was inoculated onto 16 other fruits. This is the first report of a bacterial disease of apricot caused by B. cepacia in China.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼