RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

        ( Prasanna Srinivasan. V ),( Balasubadra. K ),( Saravanan. K ),( Arjun. V. S ),( Malarkodi. S ) 한국인터넷정보학회 2021 KSII Transactions on Internet and Information Syst Vol.15 No.6

        The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.

      • SCISCIESCOPUS

        Development of daily gridded rainfall dataset over the Ganga, Brahmaputra and Meghna river basins

        Prasanna, Venkatraman,Subere, Juvy,Das, Dwijendra K.,Govindarajan, Srinivasan,Yasunari, Tetsuzo John Wiley Sons, Ltd 2014 Meteorological applications Vol.21 No.2

        <P><B>Abstract</B></P><P>The India Meteorological Department (IMD) gridded rainfall dataset, the 47 Bangladesh gauge rainfall observations and the Tropical Rainfall Measuring Mission (TRMM) 3B42V6 satellite data are used in the present analysis. The nearest neighbour interpolation scheme is used, wherein the interpolated values are computed from a weighted sum of observations. The Bangladesh daily gauge measured rainfall is interpolated into regular grids of 0.5° × 0.5° resolution every day from January 1988 to December 2007 and appended with the daily gridded dataset of the IMD over the Indian region. A similar resolution dataset of 0.5° × 0.5° for the TRMM‐3B42V6 data from January 1998 to December 2007 is created from the original data of 0.25° × 0.25° resolution. To produce a merged rainfall product, all the gridded datasets are merged. The merging of datasets is done in such a way as to include the highest rainfall at each grid point from the three products. Based on the three available sets of daily observations (IMD dataset (1° × 1°), TRMM‐3B42 (0.25° × 0.25°) and 46 daily station observations over Bangladesh), a dataset of 0.5° × 0.5° resolution on a daily scale is generated. The focus of this study is to compare the TRMM‐3B42V6 rainfall data over the Ganga, Brahmaputra and Meghna (GBM) domain with observed point gauge data, and assess the possibility of using them for application in real time flood forecasting as well as to serve as a comparison tool for the baseline simulation of high resolution atmospheric models aimed at flood forecasting and climate change projections. Copyright © 2012 Royal Meteorological Society</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼