RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Enhancing the Robustness and Efficiency of Scale-free Network with Limited Link Addition

        ( Li Li ),( Qing-shan Jia ),( Xiaohong Guan ),( Hengtao Wang ) 한국인터넷정보학회 2012 KSII Transactions on Internet and Information Syst Vol.6 No.5

        The robustness of a network is usually measured by error tolerance and attack vulnerability. Significant research effort has been devoted to determining the network design with optimal robustness. However, little attention has been paid to the problem of how to improve the robustness of existing networks. In this paper, we investigate how to optimize attack tolerance and communication efficiency of an existing network under the limited link addition. A survival fitness metric is defined to measure both the attack tolerance and the communication efficiency of the network. We show that network topology reconfiguration optimization with limited link addition (NTRLA) problem is NP-hard. Two approximate solution methods are developed. First, we present a degree-fitness parameter to guide degree-based link addition method. Second, a preferential configuration node-protecting cycle (PCNC) method is developed to do trade-off between network robustness and efficiency. The performance of PCNC method is demonstrated by numerical experiments.

      • SCIESCOPUSKCI등재

        TCA: A Trusted Collaborative Anonymity Construction Scheme for Location Privacy Protection in VANETs

        Zhang, Wenbo,Chen, Lin,Su, Hengtao,Wang, Yin,Feng, Jingyu Korean Society for Internet Information 2022 KSII Transactions on Internet and Information Syst Vol.16 No.10

        As location-based services (LBS) are widely used in vehicular ad-hoc networks (VANETs), location privacy has become an utmost concern. Spatial cloaking is a popular location privacy protection approach, which uses a cloaking area containing k-1 collaborative vehicles (CVs) to replace the real location of the requested vehicle (RV). However, all CVs are assumed as honest in k-anonymity, and thus giving opportunities for dishonest CVs to submit false location information during the cloaking area construction. Attackers could exploit dishonest CVs' false location information to speculate the real location of RV. To suppress this threat, an edge-assisted Trusted Collaborative Anonymity construction scheme called TCA is proposed with trust mechanism. From the design idea of trusted observations within variable radius r, the trust value is not only utilized to select honest CVs to construct a cloaking area by restricting r's search range but also used to verify false location information from dishonest CVs. In order to obtain the variable radius r of searching CVs, a multiple linear regression model is established based on the privacy level and service quality of RV. By using the above approaches, the trust relationship among vehicles can be predicted, and the most suitable CVs can be selected according to RV's preference, so as to construct the trusted cloaking area. Moreover, to deal with the massive trust value calculation brought by large quantities of LBS requests, edge computing is employed during the trust evaluation. The performance analysis indicates that the malicious response of TCA is only 22% of the collaborative anonymity construction scheme without trust mechanism, and the location privacy leakage is about 32% of the traditional Enhanced Location Privacy Preserving (ELPP) scheme.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼